

FACCE-MACSUR

Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change

Stefan Fronzek^{1*}, Nina Pirttioja¹, Timothy R. Carter¹, Marco Bindi², Holger Hoffmann³, Taru Palosuo⁴, Margarita Ruiz-Ramos⁵, Fulu Tao⁴, Miroslav Trnka^{6,7}, Marco Acutis⁸, Senthold Asseng⁹, Piotr Baranowski¹⁰, Bruno Basso¹¹, Per Bodin¹², Samuel Buis¹³, Davide Cammarano¹⁴, Paola Deligios¹⁵, Marie-France Destain¹⁶, Benjamin Dumont¹⁶, Frank Ewert^{3,17}, Roberto Ferrise², Louis François¹⁶, Thomas Gaiser³, Petr Hlavinka^{6,7}, Ingrid Jacquemin¹⁶, Kurt Christian Kersebaum¹⁷, Chris Kollas^{17,21}, Jaromir Krzyszczak¹⁰, Ignacio J. Lorite¹⁸, Julien Minet¹⁶, M. Ines Minguez⁵, Manuel Montesino¹⁹, Marco Moriondo²⁰, Christoph Müller²¹, Claas Nendel¹⁷, Isik Öztürk²², Alessia Perego⁸, Alfredo Rodríguez⁵, Alex C. Ruane²³, Françoise Ruget¹³, Mattia Sanna⁸, Mikhail A. Semenov²⁴, Cezary Slawinski¹⁰, Pierre Stratonovitch²⁴, Iwan Supit²⁵, Katharina Waha^{21,26}, Enli Wang²⁷, Lianhai Wu²⁸, Zhigan Zhao^{27,29}, Reimund P. Rötter^{4,30}

¹Finnish Environment Institute (SYKE), 00251 Helsinki, Finland
²University of Florence, 50144 Florence, Italy
³INRES, University of Bonn, 53115 Bonn, Germany
⁴Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
⁵CEIGRAM-AgSystems, Universidad Politecnica de Madrid, 28040 Madrid, Spain
⁶Institute of Agrosystems and Bioclimatology, Mendel University in Brno, Brno 613 00, Czech Republic
⁷Global Change Research Centre AS CR,v.v.i., 603 00 Brno, Czech Republic
⁸University of Milan, 20133 Milan, Italy
⁹University of Florida, Gainesville, FL 32611, USA
¹⁰Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland
¹¹Michigan State University, East Lansing, MI 48824, USA
¹²Lund University, 223 62 Lund, Sweden
¹³INRA, UMR 1114 EMMAH, F-84914 Avignon, France
¹⁴James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland

¹⁵University of Sassari, 07100 Sassari, Italy

i
Joint Programming Initiative
Agriculture, Food Security, and Climate Change
Modelling European Agriculture with Climate Change for
Food Security (FACCE-MACSUR)
1 June 2016
24 months
CropM 4
C4.3-D1
Finnish Environment Institute (SYKE)
month 24
2017-06-04

Revision	Changes	Date
1.0	First Release	2017-06-04

¹⁶Université de Liège, 4000 Liège, Belgium

¹⁷Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany

¹⁸IFAPA Junta de Andalucia, 14004 Córdoba, Spain

¹⁹University of Copenhagen, 2630 Taastrup, Denmark

²⁰CNR-IBIMET, 50145 Florence, Italy

²¹Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany

²²Aarhus University, 8830 Tjele, Denmark

²³NASA Goddard Institute for Space Studies, New York, NY 10025, USA

²⁴Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK

²⁵Wageningen University, 6700AA Wageningen, The Netherlands

²⁶CSIRO Agriculture Flagship, 4067 St Lucia, Australia

²⁷CSIRO Agriculture Flagship, 2601 Canberra, Australia

²⁸Rothamsted Research, North Wyke, Okehampton, EX20 2SB, UK

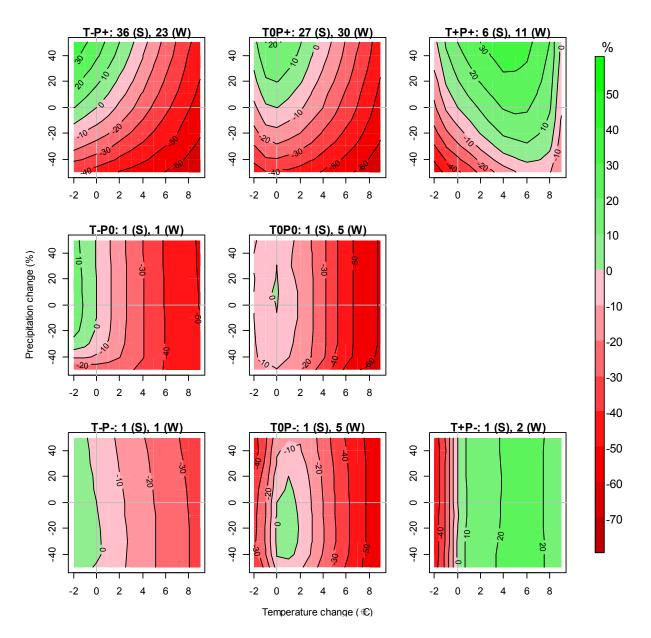
²⁹China Agricultural University, 100094 Beijing, China

³⁰Crop Production Systems in the Tropics, Georg-August-Universität Göttingen, Germany *Corresponding author. Email: stefan.fronzek@ymparisto.fi

*stefan.fronzek@ymparisto.fi

Abstract/Executive summary

Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to $+9^{\circ}$ C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses.


The model ensemble was used to simulate yields of winter and spring wheat at sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern.

The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes, Figure 1) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description.

Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index.

Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.

The full manuscript of this study is currently under revision (Fronzek et al. 2017).

Figure 3. IRS patterns of winter wheat yield change relative to the baseline (%) averaged across members of classes defined according to the location of maximum yield. Panels are organised with the location of maximum yield occurring at cooler (T-), similar (T0) or warmer (T+) temperatures than the baseline in columns from left to right, and at wetter (P+), similar (P0) or drier (P-) conditions than the baseline in rows from top to bottom. No model response was classified as T+P0. Frequencies of IRSs falling in each class for spring (S) and winter (W) wheat are shown on top of each plot.

References

Fronzek, S., Pirttioja, N., T.R. Carter, M. Bindi, H. Hoffmann, T. Palosuo, M. Ruiz-Ramos, F. Tao, M. Trnka, M. Acutis, S. Asseng, P. Baranowski, B. Basso, P. Bodin, S. Buis, D. Cammarano, P. Deligios, M.-F. Destain, B. Dumont, F. Ewert, R. Ferrise, L. François, T. Gaiser, P. Hlavinka, I. Jacquemin, K.C. Kersebaum, C. Kollas, J. Krzyszczak, I.J. Lorite, J. Minet, M.I. Minguez, M. Montesino, M. Moriondo, C. Müller, C. Nendel, I. Öztürk, A. Perego, A. Rodríguez, A.C. Ruane, F. Ruget, M. Sanna, M. Semenov, C. Slawinski, P. Stratonovitch, I. Supit, K. Waha, E. Wang, L. Wu, Z. Zhao and R.P. Rötter, 2017. Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change. Under revision for Agricultural Systems.