Integrated Assessment of Climate Change Mitigation and Adaptation Impacts at Field and Farm level in the Austrian Mostviertel Region

Martin Schönhart¹, Thomas Schauppenlehner², Michael Kuttner³, Mathias Kirchner¹, Erwin Schmid¹

TradeM International Workshop
Economics of integrated assessment approaches for agriculture and the food sector
25-27 November 2014, Hurdalsjøen Hotel, Norway

¹Institute for Sustainable Economic Development, BOKU University of Natural Resources and Life Sciences, Vienna
²Institute of Landscape Development, Recreation and Conservation Planning, BOKU
³Department of Conservation, Biology, Vegetation Ecology, and Landscape Ecology, University of Vienna
Global change at landscape level

drivers
- climate change
- CAP reforms & climate change policies
- international market developments

impacts
- land use & livestock change
- farm welfare
- Abiotic environmental impacts
- biodiversity
Case study landscape

Mostviertel
geological transition zone
between flat land (Danube valley, N)
and alpine region (Nördliche Kalkalpen, S)

Farms: N=113

N

1000mm | 8-9°C

Farms: N=118

1250mm | 7-8°C

Strauss et al., 2013.

Int. J. of Climat. 33, 430–443.
Methods and Data

Input

- Natural & socio-economic data
- Input and output prices
- CAP
- Production functions
- Farm labor supply
- Livestock – herd sizes
- Observed land use
- Spatially explicit field data
- Landscape elements
- Climate scenarios
- Topography
- Soil characteristics

Models

- **CropRota**
 - **EPIC**
 - **CALDIS VATIS**
 - **FAMOS[space]**

Output

- Socio-economic & RD indicators
 - Farm gross margin
 - Public budget spending
 - Farm labor demand
 - Landscape diversity & appearance
- Agri-environmental indicators
 - Agric. & forestry land use change
 - Biodiversity
 - SOC
 - Soil sediment loss
 - N & P nutrient balances
 - GHG emissions
- Food production indicators
 - Crop & livestock production

2. e.g. Izaurralde et al. (2006). Ecol Modell 192, 362-384.
EPIC – model run settings

Input Data
- Field
 - soil
 - slope
 - elevation
- ACLiReM
 - Climate change (precipitation) scenarios
 - CS01 +0%
 - CS05 +20%
 - CS09 -20%
- Periods
 - 1990-2005
 - 2025-2040

Management
- Cropland
 - Tillage
 - Intensity
 - Irrigation
 - conventional
 - high
 - moderate
 - low
 - reduced
 - high
 - moderate
 - low
 - cover crops
 - high
 - moderate
 - low
- Grassland
 - 1-cut/3-cut
 - high
 - moderate
 - low

Output
- Crop yield/forage yield
- Above ground biomass
- Sediment yield
- Runoff
- Evapotranspiration
- Nutrient loads (N, P)
- Nutrient uptake (N, P)
- Soil organic carbon
- ...
Impact, mitigation & adaptation scenarios

<table>
<thead>
<tr>
<th>Name</th>
<th>CC</th>
<th>AEP</th>
<th>CAP reform</th>
<th>Mitigation policies</th>
<th>Adaptation policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF_2008</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF_2040</td>
<td>No</td>
<td>No</td>
<td>no dairy quota; no livestock premiums; regional farm payment; greening; LFA payments from 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS[CC]_i</td>
<td>Yes</td>
<td>No</td>
<td>like REF_2040</td>
<td>energy crops on set aside; subsidies for landsc. elements, SRF, afforestation, cover crops, min. tillage and extensive land use</td>
<td></td>
</tr>
<tr>
<td>CS[CC]_m</td>
<td>Yes</td>
<td>No</td>
<td>like REF_2040</td>
<td></td>
<td>no greening, subsidies for maintenance of steep slope grass land and irrigation</td>
</tr>
<tr>
<td>CS[CC]_a</td>
<td>Yes</td>
<td>No</td>
<td>like REF_2040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS[CC]_m&a</td>
<td>Yes</td>
<td>No</td>
<td>like REF_2040</td>
<td>like CS[CC]_m</td>
<td>like CS[CC]_a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Climate Change (CC) Scenario Name</th>
<th>∆ temperature (°C)</th>
<th>∆ precipitation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS01</td>
<td>+ 1.6</td>
<td>0%</td>
</tr>
<tr>
<td>CS05</td>
<td>+ 1.6</td>
<td>+20%</td>
</tr>
<tr>
<td>CS09</td>
<td>+ 1.6</td>
<td>-20%</td>
</tr>
</tbody>
</table>
Results – average changes in farm gross margins
1990-2005/2025-2040
Results – changes in farm gross margins
1990-2005/2025-2040
Results – land use change
1990-2005/2025-2040; northern region
Results – soil management
1990-2005/2025-2040; northern region
Results – changes in GHG emissions
1990-2005/2025-2040
Results - farm land biodiversity indicators
1990-2005/2025-2040
Discussion on results

- Both mitigation and adaptation increase farm incomes eventually at the cost of public budgets.
- Adaptation policies that increase flexibility can come at environmental costs (trade-off between production and environmental protection).
- Diverse climate change impact among regions and farms despite proximity of both case study landscapes.
- Differences among climate scenarios depends on the region and can be small compared to the policy impacts.
- Increasing productivity on average increases intensification pressures.
 - Permanent grassland, extensive land use and landscape elements may be threatened.
 - Future AEP design must take changing productivity into account.
Discussion on methods

- High spatial resolution of integrated assessment framework
- Abiotic and biotic environmental indicators
- Rich in crop and livestock management variants
- Detailed representation of agricultural policies

+ Covers two case study landscapes only
- No interactions among farms so far
- High data and computational demand
- Assumption on max. gross margin
Outlook
Analysis of trade-offs and synergies

Kirchner et al., 2014. Ecological Economics (in press).
Outlook
Landscape visualization
Research to this presentation has been supported by the Austrian Academy of Sciences (ÖAW) as part of the Project CC-ILA and the Federal Ministry of Agriculture, Forestry, Environment and Water Management of Austria within the FACCE-JPI Knowledge Hub MACSUR.