Three years of collaboration in TradeM - Agricultural markets and prices

Floor Brouwer, Franz Sinabell, with contributions from the workpackage leaders: Waldemar Bojar, Øyvind Hoveid, Gabriele Dono and Katharina Helming
Work done and achievements

• ~ 50 researchers involved, mostly economists
• 2 scientific events per year
• Regional pilots through integrated assessments (South, Centre, East, North)
• Partners contributed to international model comparison (IIASA, PIK, Wageningen UR)
• special issue, papers, stakeholder events, network with new projects, improved models, …
Population growth to continue

- Total population (billions)
- Annual increments (millions)

- High variant
- Low variant

Population growth to continue
Urbanization to accelerate
Can we model long run trends?
Can we model short run departures from long run trends?

Real agricultural prices have fallen since 1900, even as world population growth accelerated

Agricultural price index, 1977-79=100
World population, billions

Source: USDA, Economic Research Service using Fuglie, Wang, and Bell (2012). Depicted in the chart is the Grilli-Yang agricultural price index adjusted for inflation by the U.S. Gross Domestic Product implicit price index. The Grilli-Yang price index is a composite of 18 crop and livestock prices, each weighted by its share of global agricultural trade (Plaffenzeller et al., 2007). World population estimates are from the United Nations.

Source: IPCC AR-5, WGII, Ch 7.
Global Ag-Food System Projections - *Projected prices in 2050 without climate change*

Still large differences in long-term price projections for agricultural aggregate, though sharp narrowing after comparison exercise.

Price index (2005** = 1)

<table>
<thead>
<tr>
<th>Model</th>
<th>2030 orig.*</th>
<th>2050 orig.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>ENVISAGE</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>EPPA</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>FARM</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>GTEM</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>MAGNET</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>GCAM</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>GLOBIOM</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>IMPACT</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>MAgPIE</td>
<td>1.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

* original: relative to model-standard numéraire; rebased: relative to the price index for global GDP

** trended 2005, i.e. hypothetical in the absence of short-term shocks

Further reading

- Robinson, van Meijl, Willenbockel et al., “Comparing supply-side specifications in models of global agriculture and the food system”
- Valin, Sands, van der Mensbrugghe et al., “The future of food demand: understanding differences in global economic models”
- Schmitz, van Meijl et al., “Land-use change trajectories up to 2050: insights from a global agro-economic model comparison”
- Müller and Robertson, “Projecting future crop productivity for global economic modeling”
- Nelson, van der Mensbrugghe et al., “Agriculture and climate change in global scenarios: why don’t the models agree”
- Lotze-Campen, von Lampe, Kyle et al., “Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison”

- Nelson et al., “Climate change effects on agriculture: Economic responses to biophysical shocks”
Agriculture: global exports

Source: COMEXT, GTA

<table>
<thead>
<tr>
<th>Country</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU28</td>
<td>101</td>
<td>114</td>
<td>120</td>
</tr>
<tr>
<td>USA</td>
<td>105</td>
<td>117</td>
<td>115</td>
</tr>
<tr>
<td>Brazil</td>
<td>59</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>China</td>
<td>31</td>
<td>34</td>
<td>36</td>
</tr>
<tr>
<td>Canada</td>
<td>30</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Argentina</td>
<td>31</td>
<td>32</td>
<td>30</td>
</tr>
</tbody>
</table>

Agriculture in EU: trade

EU agr. output 2014: 380 bn €

- Beef: 8.5%
- Pork: 9.4%
- Equids: 0.3%
- Sheep/goats: 1.4%
- Poultry: 5.7%
- Other meat: 0.7%
- Milk: 16.3%
- Eggs: 2.3%
- Other livestock: 0.7%
- Non-livestock: 54.7%

Source: EUROSTAT – Economic Accounts of Agriculture; output of agricultural products
Economic and agronomic models

• Agronomic models of soils, crops and livestock mirror physical and biological processes, and farm management is given. Economic models are concerned with initiation and management of these processes.

• Integration of agronomic and economic models are possible and fruitful, have been improved and will be improved further.

• In general, economic responses tend to level down and smooth out the impacts from the agronomic models.
Economist's wish-list for agronomic models

• Models that perform well in statistical tests with regard to experiments
• Models with relatively large time scale
• Models for main processes with a continuous scope of varieties and breeds
• Models that allow management to be varied.
Northern Savo, Finland

- Increasing grass growth benefits dairy and beef
- Inter-annual volatility of grass yield increases. Managing grassland yield variation at the farm level - cost of drought risk may increase
- Positive market development and more flexible and encouraging policies needed for adaptation
Farmers may benefit from climate change in several regions of Austria; effects seem to be mixed for farmers specialised in crop production. Climate change induced intensification of land and benefits result from participation in agri-environmental programs.

Benefits of climate change (through productivity gains) will increase opportunity costs for participation in AEP. Payments may have to increase for such farmers.
Sardinia, Italy

- Yields of forage crops are reduced from climate change, causing income drops for livestock farming. Rainfed hill sheep farming is under threat of abandonment.
- Irrigation costs increase in regions with collective water networks and volumetric water pricing.
- Higher temperatures during autumn and winter will provide income opportunities, but farmers need to understand the crop yield changes.
Brandenburg, Germany

- Climate change may aggravate water stress for plant growth
- Rising prices for agricultural commodities can make irrigation profitable
- Irrigation may reduce seasonal variations of crop yield and may increase crop yields by up to 40% for maize and up to 20% for wheat and sugar beet
Training on Integrated Impact Assessment

- Topics: Policy Impact Assessment, identification of policy instruments, goals and scope, Methods and tools for participatory approach, user interaction
Training on Integrated Impact Assessment

• Training for Master & PhD Students conducted at University of Haifa, March 2014: „Sustainability assessment of land use scenarios: what needs to be considered and how can it be done?” A Practical Policy Example Biosphere Reserve Ramat Menashe
Concluding remarks

- Some farmers may claim that climate change adaptation is easy compared to the difficulties caused by policies.
- Action based on weather observations only, is insufficient for farmers to respond to climate change. Researchers need support from farmers in understanding the responses in practice.
- Policies might be too slow to respond to needs for change in agriculture.
Concluding remarks

- Winners and losers seem to be observed everywhere. The impacts of climate change is heterogeneous among farm types and regions.
- Effects beyond 2050 remain largely unclear, mainly because the effects of extreme events are not considered.
- Variability of yields is important to farm incomes, but most studies only consider average changes.
- Farmers are ready to design their site-specific adaptation response providing that new knowledge and learning spaces are available. A learning process based on integrated models, assessment of short- and long-term effects, is needed for farmers to adapt to climate change, price fluctuations and policy change.