

Uncertainty in simulating N uptake and N use efficiency in the crop rotation systems across Europe

Xiaogang. Yin¹, K.C. Kersebaum²*, C. Kollas³, C. M. Armas-Herrera⁴, S. Baby¹, N. Beaudoin⁴, M. Bindi⁵, M. Charfeddine⁶, T. Conradt³, I.G. Cortazar-Atauri⁷, F. Ewert⁸, R. Ferrise⁹, P. Hlavinka¹⁰, H. Hoffmann⁸, M.P. Hoffmann¹¹, M. Lana², M. Launay⁷, R. Manderscheid¹⁰, K. Manevski¹, B. Mary⁴, W. Mirschel², M. Moriondo¹², C. Müller³, C. Nendel², I. Öztürk¹, T. Palosuo¹³, D. Ripoche-Wachter⁷, R. P. Rötter¹³, F. Ruget¹⁴, B. Sharif¹, M. Trnka¹⁰, D. Ventrella⁶, H.J. Weigel¹⁵, L. Wu¹⁶, **J. E. Olesen^{1*}**

Fig. 1. Locations of the five experimental study sites in Europe.

ROTATION/SINGLE

(Kollas et al., 2015)

28 October 2015

Objectives

- > To evaluate the model performance in simulating crop N uptake in crop rotation systems across Europe within different calibration levels;
- > To assess the model ensemble effects in predicting N uptake;
- > To investigate different management effects on N uptake and N use efficiency.

Observation data

- > Grain N for all the treatments in BR, FO, MU & TH
- > Crop N for all the treatments in BR, FO, MU & TH
- > N leaching in FO for 0-100cm depth, in TH for 0-110cm depth
- > Soil N in BR for 0-30cm depth, in MU for 0-90cm depth, in TH for 0-110cm depth

Model applications (13/9)

Model	Abbreviation	Version	Rotation/Single	CN model	Notes
APSIM	AP	7.5	YES/NO	CN	HL
CROPSYST	CS	3.02	YES/YES	N	HL
DAISY	DA	5.16	YES/YES	CN	HL
DSSAT1	DS	4.6	NO/YES	CN	L
DSSAT2	DT	4.5	NO/YES	CN	HL
FASSET	FA	2.2.3	YES/YES	CN	HL
HERMES	HE	4.26	YES/YES	N	HL
LINTUL2	LI	Svn3257	YES/YES	N	HL
MONICA	MO		YES/YES	CN	L
SPACSYS	SP	5.0	NO/YES	CN	L
STICS	ST	8.3.1	YES/YES	N	HL
SWIM	SW		YES/NO	Ν	HL
WOFOST	WO	7.1.5	NO/YES		L

Notes: L means step2a, H means step 2b

Section 1: Model performance in simulating N uptake under both minimum and full calibration

models included in this section

> BR: FA, HE, MO, ST, SW

>FO: FA, HE, ST, SW

>MU: DA, FA, HE, MO, ST, SW

>TH: FA, HE, ST

AARHUS UNIVERSITET Predicted crop N under minimum calibration

source 🛱 CroN.obs 🚔 CroN.rot.low 🚔 CroN.single.low

AARHUS UNIVERSITET Predicted crop N under full calibration

8

AARHUS UNIVERSITET Predicted Grain N under minimum calibration

9

AARHUS UNIVERSITET Predicted Grain N under full calibration

source e GrainN.obs GrainN.rot.high GrainN.single.high

Conclusions

- ✓ Both ROTATION and SINGLE models performed better under full calibration than minimum calibration in simulating both grain N and crop N
- ✓More models performed better in predicting N uptake than less models
- ✓ ROTATION simulation resulted slightly higher quality compared to the SINGLE simulation

Section2: How do models respond to different managements in predicting N uptake (based on outputs from step 2b)

- > BR: 1. Low CO2 low N; 2. Low CO2 high N; 3. High CO2 low N; 4. High CO2 high N
- > FO: 3. Plough without residue; 4. No tillage without residue; 5. Plough with residue; 6. No tillage with residue
- > MU: 1. rain-fed; 2. irrigated
- > TH: 1. High N without CC; 2, Low N without CC; 3. High N with CC;
 4. Low N with CC

crop.obs

28 October 2015

Section 3 what we plan to do next

>To assess multi-model ensembles in simulating N uptake

- Multi-model ensembles in simulating grain N/crop N under both minimum calibration and full calibration
- To consider both ROTATION and SINGLE simulation for each main crop (WHB, BAW, SBT, PEA)
- >To investigate CO_2 concentrations and catch crop effects on N use efficiency and N harvest index (BR & TH)
- \bullet The agronomic efficiency of applied N (AE_{\rm N})
- The apparent recovery efficiency of applied N (RE_N)
- The physiological efficiency of applied N (PE_N)
- N harvest index (HI_N)

Manuscript2:

- How accuracy of models in simulating N cycling in the
- crop rotation systems across Europe
- (based on outputs from step 2b)
- > N uptake (solved)
- > N leaching (from April to April)
- Soil N (each crop season)
- > N emissions (each crop growing season)
- N balance (whole rotation)

Time arrangement

- - 20.Dec.2015, to finish all the calculations for N uptake simulations
- **1.Jan. 2016 15. March. 2016**, to finalize the first manuscript "Uncertainty in simulating N uptake and N use efficiency in the crop rotation systems across Europe"
- 1.Jan. 2016 30. Mar. 2016, to finish calculations for N balance and draft
- 1. Apr. 2016 31. May. 2016, to finalize the second manuscript regarding N balance

Thank you for your attention!

28 October 2015