Climate scenarios in MACSUR2

S. Fronzek¹, T. R. Carter¹, M. Semenov, R. Rötter, F. Ewert, A. Ruane ¹Finnish Environment Institute (SYKE)

Session C4 "CropM Uncertainty and Risk analysis" FACCE MACSUR Joint Workshops, Braunschweig, 29 October 2015

SYKE

Outline

- Climate scenario selection and weather-generated climate scenarios for 15 sites across Europe – M. Semenov
- Inventory of gridded observed and climate scenario datasets
- Enhanced delta-change method to construct a gridded European climate scenario dataset

Local-scale climate scenarios for impact assessments in MACSUR2

Mikhail Semenov, Rothamsted Research, UK

- 100 yrs of daily weather generated by LARS-WG for 15 sites with contrasting climates across Europe representing major crop areas
- 5 GCMs with contrasting climate sensitivity
- Two RCP: RCP4.5 and RCP8.5
- Time periods: baseline (1980-2010), near-term (2021-2040), mid-term (2041-2060) and long-term (2081-2100) future.
- Scenarios available from Mikhail Semenov (<u>mikhail.semenov@rothamsted.ac.uk</u>)

LARS-WG weather generator

- Generates precipitation, min and max temperature, radiation and potential evapotraspiration
- Modelling of precipitation event is based on wet/dry series
- Semi-empirical distributions are used for distribution of climatic variables
- LARS-WG was extensively tested in diverse climates and is used for impact assessments of climate change in more than 70 countries for research and in several Universities as an educational tool
- LARS-WG is available for academic, governmental and nonprofit organizations

Local-scale CMIP5-based scenarios: LARS-WG weather generator

GCMs from CMIP5 observed weather or ELPIS

Local-scale climate scenarios for MACSUR2 impact assessments

Site parameters derived from observed weather or ELPIS

(Semenov & Stratonovitch (2015), Clim Research, 65:123-139)

Selection of sites

Site	Nick	Lat	Lon	Alt, m
Jyvaskyla	JY	62.40	25.68	141
Uppsala	UP	59.90	13.60	24
Tylstrup	TR	55.15	11.33	13
Kaunas	KA	54.88	23.83	77
Wageningen	WA	51.97	5.67	7
Rothamsted	RR	51.80	-0.35	128
Halle	HA	51.51	11.95	93
Vienna	VI	48.23	16.35	198
Debrecen	DC	47.60	21.60	114
Clermont-Ferrand	CF	45.80	3.10	329
Sremska	SR	45.00	19.51	84
Toulouse	TU	43.62	1.38	151
Montagnano	MO	43.30	11.80	250
Lleida	LL	41.63	0.60	190
Seville	SL	37.42	-5.88	34

Selection of GCMs

	MACCUD						
CMIP5.CORDEX	MACSUR	Agiviip	ISI-MIP	Tem.MED	Tem.NEU	Rain.MED	Rain.NEU
ACCESS1-3	1	1	1	5.1	4.9	-8.4	14.3
BCC-CSM1-1	2	2	2	4.2	4.8	-20.2	6.7
CanESM2	3	3	3	5.5	5.5	-10.1	14.7
CMCC-CM	4	4	4	5.8	6.4	-27	18.5
CNRM-CM5	5	5	5	4.1	4.4	2.5	17.1
CSIRO-MK36	6	6	6	4.8	4.9	-21	9.4
EC-EARTH	7	7	7	4.2	4.3	-10.4	11.3
GFDL-CM3	8	8	8*	6.7	6.8	-27	18.5
GISS-E2-R-CC	9	9	9	3.4	3.9	-14.6	10.7
HadGEM2-ES	10	10	10	5.8	6.1	-22.2	1.6
INMCM4	11	11	11	3.1	3.3	-24.9	4.3
IPSL-CM5A-MR	12	12	12	5.5	5.9	-36.2	12.9
MIROC5	13	13	13	5.0	5.5	-8	10.2
MIROC-ESM	14	14	14	6.4	6.6	-12	24.9
MPI-ESM-MR	15	15	15	4.3	3.8	-25	5.9
MRI-CGCM3	16	16	16	3.7	4.2	-5.3	17.1
NCAR-CCSM4	17	17	17	4.2	4.2	-16.2	3.4
NCAR-CESM1-CAM5	18	18	18	5.1	4.6	-11.4	8
NorESM1-M	19	19	19	4.1	4.3	-13.7	7

Inventory of gridded observed and scenario climate datasets

Different methods to construct scenario data from climate model output

Change factor ("delta change") method: Differences or ratios between simulated baseline and simulated future climate are used to adjust observed data.

Bias-correction (or bias-adjustment) of GCM or RCM simulations: the simulated timeseries is adjusted such that statistical properties are close to an observed dataset; several alternative approaches have been developed.

Statistical downscaling: Statistical relationships between from observations of largescale variables and a local weather variable are used to predict a future time-series of the local variables from equivalent predictors of GCM output.

Weather generators (WG): Statistical properties of observed weather time-series are used to generate synthetic time-series. By modifying the statistical properties based on projections with climate models, future synthetic time-series can be constructed.

→ All rely on observed climate datasets

SYKE

Gridded observed climate datasets Preliminary

	-		-			<u>indry</u>	
Name	Spatial	Period	Temp.	Variables ¹	Method	Reference, web line	
	extend		resol.				
	+resol.						
E-OBS	Europe,	1950-	Daily	TG, TN, TX	Interpolated from	(Haylock et al. 2008),	
	0.25°	2014		RR, PP	station data	http://eca.knmi.nl/download/ensem	
						bles/download.php	
JRC/MARS/Agri	Europe,	1975-	Daily	TG, TN, TX,	Interpolated from	http://mars.jrc.ec.europa.eu/mars/	
4Cast	25 km	2014		RR, WS,	station data	About-us/AGRI4CAST/Data-	
				GR, RH, PE,		distribution/AGRI4CAST-	
				SN		Interpolated-Meteorological-Data	
WATCH-	Global,	1979-	Daily	TG, RR, PP,	Combining ERA-	(Weedon et al. 2011),	
WFDEI	0.5°	2012	and 3-	WS, GR,	interim re-analysis	http://www.eu-	
			hourly	SH, SN	with monthly CRU	watch.org/data_availability	
			,	- , -	data (earlier		
					WATCH version		
					used ERA-40)		
AgMERRA	Global,	1980-	Daily	TG, TN, TX,	Combining MERRA	(Ruane et al. 2015),	
(AgMIP)	0.25° ́	2010	,	RR, WS,	re-analysis with	http://data.giss.nasa.gov/impacts/a	
				GR, RH	monthly CRU data	gmipcf	
					and other		
					observations		
EURO4M	Europe,	1989-	Daily	TG, TN, TX,	Downscaling ERA-	http://www.euro4m.eu	
	5 km	2010		RR	interim with the		
					MESAN weather		
					model		

¹) variable abbreviations: mean temperature (TG), minimum temperature (TN), maximum temperature (TX), precipitation sum (RR), sea level pressure (PP), wind speed at 10 m (WS), specific humidity (SH), relative humidity (RH), Penman potential evaporation (PE), global radiation (GR), snowfall rate or depth (SN)

SYKE

Gridded climate scenario datasets

Name	Spatial extend + res.	Scenarios	Temp. resol.	Variables	Method	Reference, we iminary.	- do -
ISI-MIP	Global, 0.5°	5 GCMs x 4 RCPs	Daily	TG, TN, TX RR, PP, SW, GR, SN	Bias- correction using WATCH	(Hempel et al. 2013) https://www.pik-potsdam.de/research/climate- impacts-and-vulnerabilities/research/rd2-cross- cutting-activities/isi-mip	ao no cite
AgMIP Climate Scenario Generation Tool	Global	CMIP5	Daily	All typically needed for crop modelling	R scripts and accompanied data files	Hudson & Ruane 2013	
Bias- corrected CORDEX- RCMs	Europe		Daily		Selected RCMs have been bias- corrected using WATCH or EURO4M data	Currently developed in several projects e.g. by SMHI, DMI	
LARS-WG	Europe		Daily		Applying LARS-WG with CMIP5- based changes	http://www.rothamsted.ac.uk/mas- models/larswg.php	
AgriAdapt	Europe, sub- regions	SRES, several GCMs	Daily	All typically needed for crop modelling	Delta change using MARS observations	(Angulo et al. 2013)	
JRC- MARS- Agri4Cast	Europe, 25 km	SRES RCMs	Daily	All typically needed for crop modelling	ClimGen WG	Duveller et al. 2015 http://agri4cast.jrc.ec.europa.eu/DataPortal	

Some (personal) recommendations for MACSUR

- When focusing on (e.g. 30-year) mean changes in climate, the change factor method would be sufficient
- Changes in (inter-annual and day-to-day) variability as projected by climate models are included in bias-corrected climate scenario datasets, although one cannot differentiate between the impacts of mean changes vs. impacts of variability changes. WG and statistical downscaling usually also includes changes in IA variability (restricted to the statistical properties of the WG).
- The **spatial coherence** of weather time-series on a grid (e.g. a dry year in one grid cell is also dry in the neighbouring grid cell) is not given for weather generator datasets, although there might be exceptions.
- As the delta method uses **observations for the baseline**, crop model simulations can be directly compared to observed yields or field validation data on a year-by-year (or day-by-day) basis. This is not the case for any of the other methods, which use modelled or synthetic climate data for the baseline.
- Availability of scenario datasets

Slide provided by Alex Ruane Enhanced Delta Method

Recognizable historical time series adjusted to impose climate changes drawn from CMIP5 models.

Adjusts each month's:

- Mean Tmax, Tmin
- Standard deviation of daily temperatures
- Mean precipitation
- # rainy days
- Shape of rainfall distribution

Does not adjust:

- Solar radiation
- Wind speed
- Relative humidity at Tmax (although vapor pressure and VPD changes)

GCM $\Delta variability$ is less reliable than $\Delta means$

Shizukhuishi, Japan, hypothetical scenarios from Ruane et al., 2015