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Climate scenario selection and weather-generated climate
scenarios for 15 sites across Europe – M. Semenov
Inventory of gridded observed and climate scenario
datasets
Enhanced delta-change method to construct a gridded
European climate scenario dataset
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Local-scale climate scenarios for impact
assessments in MACSUR2

• 100 yrs of daily weather generated by LARS-WG for 15 sites with contrasting
climates across Europe representing major crop areas

• 5 GCMs with contrasting climate sensitivity

• Two RCP: RCP4.5 and RCP8.5

• Time periods: baseline (1980-2010), near-term (2021-2040), mid-term
(2041-2060) and long-term (2081-2100) future.

• Scenarios available from Mikhail Semenov (mikhail.semenov@rothamsted.ac.uk)

Mikhail Semenov, Rothamsted Research, UK



LARS-WG weather generator

• Generates precipitation, min and max temperature, radiation and
potential evapotraspiration

• Modelling of precipitation event is based on wet/dry series

• Semi-empirical distributions are used for distribution of climatic
variables

• LARS-WG was extensively tested in diverse climates and is used for
impact assessments of climate change in more than 70 countries
for research and in several Universities as an educational tool

• LARS-WG is available for academic, governmental and nonprofit
organizations



Local-scale CMIP5-based scenarios:
LARS-WG weather generator

LARS-WG

Local-scale climate scenarios
for MACSUR2 impact assessments

Site parameters derived from
observed weather or ELPISGCMs  from CMIP5

(Semenov  & Stratonovitch (2015), Clim Research, 65:123-139)



Selection of sites

Site Nick Lat Lon Alt, m
Jyvaskyla JY 62.40 25.68 141
Uppsala UP 59.90 13.60 24
Tylstrup TR 55.15 11.33 13
Kaunas KA 54.88 23.83 77
Wageningen WA 51.97 5.67 7
Rothamsted RR 51.80 -0.35 128
Halle HA 51.51 11.95 93
Vienna VI 48.23 16.35 198
Debrecen DC 47.60 21.60 114
Clermont-Ferrand CF 45.80 3.10 329
Sremska SR 45.00 19.51 84
Toulouse TU 43.62 1.38 151
Montagnano MO 43.30 11.80 250
Lleida LL 41.63 0.60 190
Seville SL 37.42 -5.88 34



Selection of GCMs

CMIP5.CORDEX MACSUR AgMIP ISI-MIP Tem.MED Tem.NEU Rain.MED Rain.NEU

ACCESS1-3 1 1 1 5.1 4.9 -8.4 14.3

BCC-CSM1-1 2 2 2 4.2 4.8 -20.2 6.7

CanESM2 3 3 3 5.5 5.5 -10.1 14.7

CMCC-CM 4 4 4 5.8 6.4 -27 18.5

CNRM-CM5 5 5 5 4.1 4.4 2.5 17.1

CSIRO-MK36 6 6 6 4.8 4.9 -21 9.4

EC-EARTH 7 7 7 4.2 4.3 -10.4 11.3

GFDL-CM3 8 8 8* 6.7 6.8 -27 18.5

GISS-E2-R-CC 9 9 9 3.4 3.9 -14.6 10.7

HadGEM2-ES 10 10 10 5.8 6.1 -22.2 1.6

INMCM4 11 11 11 3.1 3.3 -24.9 4.3

IPSL-CM5A-MR 12 12 12 5.5 5.9 -36.2 12.9

MIROC5 13 13 13 5.0 5.5 -8 10.2

MIROC-ESM 14 14 14 6.4 6.6 -12 24.9

MPI-ESM-MR 15 15 15 4.3 3.8 -25 5.9

MRI-CGCM3 16 16 16 3.7 4.2 -5.3 17.1

NCAR-CCSM4 17 17 17 4.2 4.2 -16.2 3.4

NCAR-CESM1-CAM5 18 18 18 5.1 4.6 -11.4 8

NorESM1-M 19 19 19 4.1 4.3 -13.7 7



Inventory of gridded observed and
scenario climate datasets

Different methods to construct scenario data from climate model output

Change factor (“delta change”) method: Differences or ratios between simulated
baseline and simulated future climate are used to adjust observed data.

Bias-correction (or bias-adjustment) of GCM or RCM simulations: the simulated time-
series is adjusted such that statistical properties are close to an observed dataset;
several alternative approaches have been developed.

Statistical downscaling: Statistical relationships between from observations of large-
scale variables and a local weather variable are used to predict a future time-series of
the local variables from equivalent predictors of GCM output.

Weather generators (WG): Statistical properties of observed weather time-series are
used to generate synthetic time-series. By modifying the statistical properties based
on projections with climate models, future synthetic time-series can be constructed.

All rely on observed climate datasets



Gridded observed climate datasets

Name Spatial
extend
+resol.

Period Temp.
resol.

Variables1 Method Reference, web link

E-OBS Europe,
0.25°

1950-
2014

Daily TG, TN, TX
RR, PP

Interpolated from
station data

(Haylock et al. 2008),
http://eca.knmi.nl/download/ensem
bles/download.php

JRC/MARS/Agri
4Cast

Europe,
25 km

1975-
2014

Daily TG, TN, TX,
RR, WS,
GR, RH, PE,
SN

Interpolated from
station data

http://mars.jrc.ec.europa.eu/mars/
About-us/AGRI4CAST/Data-
distribution/AGRI4CAST-
Interpolated-Meteorological-Data

WATCH-
WFDEI

Global,
0.5°

1979-
2012

Daily
and 3-
hourly

TG, RR, PP,
WS, GR,
SH, SN

Combining ERA-
interim re-analysis
with monthly CRU
data (earlier
WATCH version
used ERA-40)

(Weedon et al. 2011),
http://www.eu-
watch.org/data_availability

AgMERRA
(AgMIP)

Global,
0.25°

1980-
2010

Daily TG, TN, TX,
RR, WS,
GR, RH

Combining MERRA
re-analysis with
monthly CRU data
and other
observations

(Ruane et al. 2015),
http://data.giss.nasa.gov/impacts/a
gmipcf

EURO4M Europe,
5 km

1989-
2010

Daily TG, TN, TX,
RR

Downscaling ERA-
interim with the
MESAN weather
model

http://www.euro4m.eu

1) variable abbreviations: mean temperature (TG), minimum temperature (TN), maximum temperature (TX),
precipitation sum (RR), sea level pressure (PP), wind speed at 10 m (WS), speci c humidity (SH), relative
humidity (RH), Penman potential evaporation (PE), global radiation (GR), snowfall rate or depth (SN)



Gridded climate scenario datasets
Name Spatial

extend
+ res.

Scenarios Temp.
resol.

Variables Method Reference, web link

ISI-MIP Global,
0.5°

5 GCMs x
4 RCPs

Daily TG, TN,
TX RR,
PP, SW,
GR, SN

Bias-
correction
using
WATCH

(Hempel et al. 2013)
https ://www.pik-potsdam.de/research/climate-
impac ts-and-vulnerabilities/research/rd2-cross-
cutting-activities/isi-mip

AgMIP
Climate
Scenario
Generation
Tool

Global CMIP5 Daily All
typically
needed
for crop
modelling

R scripts and
accompanied
data files

Hudson & Ruane 2013

Bias-
corrected
CORDEX-
RCMs

Europe Daily Selected
RCMs have
been bias-
corrected
using
WATCH or
EURO4M
data

Currently developed in several projects
e.g. by SMHI, DMI

LARS-WG Europe Daily Applying
LARS-WG
with CMIP5-
based
changes

http://www.rothamsted.ac.uk/mas-
models/larswg.php

AgriAdapt Europe,
sub-
regions

SRES,
several
GCMs

Daily All
typically
needed
for crop
modelling

Delta
change
using MARS
observations

(Angulo et al. 2013)

JRC-
MARS-
Agri4Cast

Europe,
25 km

SRES
RCMs

Daily All
typically
needed
for crop
modelling

ClimGen WG Duveller et al. 2015
http://agri4cast.jrc.ec.europa.eu/DataPortal



When focusing on (e.g. 30-year) mean changes in climate, the change
factor method would be sufficient
Changes in (inter-annual and day-to-day) variability as projected by
climate models are included in bias-corrected climate scenario datasets,
although one cannot differentiate between the impacts of mean changes
vs. impacts of variability changes. WG and statistical downscaling usually
also includes changes in IA variability (restricted to the statistical properties
of the WG).
The spatial coherence of weather time-series on a grid (e.g. a dry year in
one grid cell is also dry in the neighbouring grid cell) is not given for
weather generator datasets, although there might be exceptions.
As the delta method uses observations for the baseline, crop model
simulations can be directly compared to observed yields or field validation
data on a year-by-year (or day-by-day) basis. This is not the case for any
of the other methods, which use modelled or synthetic climate data for the
baseline.
Availability of scenario datasets
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Some (personal) recommendations for
MACSUR
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Enhanced delta change method

Slide provided by Alex Ruane


