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Abstract/Executive summary 
Crop growth simulation models can differ greatly in their treatment of key processes and 
hence in their response to environmental conditions. Here, we used an ensemble of 26 
process-based wheat models applied at sites across a European transect to compare their 
sensitivity to changes in temperature (−2 to +9°C) and precipitation (−50 to +50%). Model 
results were analysed by plotting them as impact response surfaces (IRSs), classifying the 
IRS patterns of individual model simulations, describing these classes and analysing factors 
that may explain the major differences in model responses. 
 
The model ensemble was used to simulate yields of winter and spring wheat at sites in 
Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields 
relative to the baseline with respect to temperature and precipitation. IRSs of 30-year 
means and selected extreme years were classified using two approaches describing their 
pattern. 
 
The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of 
the maximum yield (nine classes, Figure 1) and strength of the yield response with respect 
to climate (four classes), resulting in a total of 36 combined classes defined using criteria 
pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by 
comparing their pattern and magnitude, without attempting to interpret these features. It 
applies a hierarchical clustering method, grouping response patterns using a distance 
metric that combines the spatial correlation and Euclidian distance between IRS pairs. The 
two approaches were used to investigate whether different patterns of yield response 
could be related to different properties of the crop models, specifically their genealogy, 
calibration and process description.  
 
Although no single model property across a large model ensemble was found to explain the 
integrated yield response to temperature and precipitation perturbations, the application 
of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield 
responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of 
response to climate changes for years with anomalous weather conditions compared to 
period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) 
similarities in IRS patterns among models with related genealogy; (v) similarities in IRS 
patterns for models with simpler process descriptions of root growth and water uptake 
compared to those with more complex descriptions; and (vi) a closer correspondence of IRS 
patterns in models using partitioning schemes to represent yield formation than in those 
using a harvest index. 
 
Such results can inform future crop modelling studies that seek to exploit the diversity of 
multi-model ensembles, by distinguishing ensemble members that span a wide range of 
responses as well as those that display implausible behaviour or strong mutual similarities. 
 
The full manuscript of this study is currently under revision (Fronzek et al. 2017). 
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Figure 3. IRS patterns of winter wheat yield change relative to the baseline (%) averaged 
across members of classes defined according to the location of maximum yield. Panels are 
organised with the location of maximum yield occurring at cooler (T-), similar (T0) or 
warmer (T+) temperatures than the baseline in columns from left to right, and at wetter (P+), 
similar (P0) or drier (P-) conditions than the baseline in rows from top to bottom. No model 
response was classified as T+P0. Frequencies of IRSs falling in each class for spring (S) and 
winter (W) wheat are shown on top of each plot. 
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