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Definitions:
Ignorance, uncertainty,

error, accuracy, precision,risk
(=> presentation M Rivington)

The Drunken Aleibiades Interrupting the Symbosium, 1648



Objectives of uncertainty evaluation

* To estimate uncertainty

— important for model developers, users, stakeholders

* To understand what is driving uncertainty

— in order to prioritize improvement efforts



Estimating uncertainty

 Three approaches:

1) Based on error in hindcasts (based on difference
between simulated and observed)

2) Based on sources of error (model input, model
parameters...)

3) Based multiple models /inter-comparison
(ensemble modelling approach...)



Conv. CC IA meth. /Winners /Loosers; mean changes; Here:
Potential changes in cereal yields, A2 (Parry et al., 2004)
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Uncertainty in biophysical impact modelling

! Modelling and regionalisation

I

(Down-)Scaling/Regionalisation
(delta change, RCM bias correction, weather generator)

Climate scenario data

(source: Rétter et al. 2012, Acta Agric Scand. Section A, 62(4), 166-180).
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Figure 1| Estimated CO, emissions over the past three decades compared with the 1S92, SRES and the
RCPs. The SA20 data are not shown, but the most relevant (SA90-A) is similar to 1S92-A and 1S22-F. The
uncertainty in historical emissions is 5% (one standard deviation). Scenario data is generally reported at

decadal intervals and we use linear interpolation for intermediate years.

(Source: Peters, 2013; Nat Clim Change)
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Figure 4 | European summer temperatures for 1500-2010. The upper
panel shows the statistical frequency distribution of European (35°N,
70°N; 25° W, 40° E) summer land-temperature anomalies (relative to
the 1970-1999 period) for the 1500-2010 period (vertical lines). The

five warmest and coldest summers are highlighted. Grey bars represent
the distribution for the 1500-2002 period with a Gaussian fit shown in
black. The lower panel shows the running decadal frequency of extreme
summers, defined as those with a temperature above the ninety-fifth
percentile of the 1500-2002 distribution. A ten-year smoothing is applied.
Reproduced with permission from ref. 69, © 2011 AAAS.

Source: Coumou & Rahmsdorf, 2012



Projected changes in mean temperature and precipitation during
March-August for selected stations in Finland

March-August (2011-2040) March-August (2041-2070)
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Model intercomparison

COST 734 (blind test, current climate); AgMIP wheat (partially and fully calibrated,
current and future)
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Modelling chain from climate via crop to
economic

Climate Biophysical Economic
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Need for INTEGRATION

UNCERTAINTY caused by ...

SSP, scenarios, e.g. Model deficienices/ Short-term
New technologies |ack of data /scaling variability/
[their diffusion ? 349 model linkage  volatility



MACSUR Regional Pilot Studies

~ A -
Northern Europe

4 R N
@ Farming systems from SEAMLESS project

O arable/cereal and mixed farming
confirmed O permanent crops and arable/specialised crops
Regional B beef and dairy cattle with permanent grassland
Pilot B dairy farms
Studies

O sheep and goats farms

Multitude of appoaches — one
direction is upscaling from farm
level (for typical farm types) of
mitigative adaptation

Options via region/national to
supra-national scales — also
taking Into account other
Sustainable Development Goals
—e.g. In NORFASYS (Rotter et
al., 2013)



MODDELING
APPROACHES
AND THEIR
INTEGRATION

Climate scenarios

Crop and variety information
Soil data

Agronomic practices

Market and policy drivers

Field level
Plant-soil models

\

Farm level

d T

Sector level

Dynamic regional sector model

Static and dynamic farm level models

Environmental and economic impacts
and land-use

Lehtonen, H.S., Rotter, R.P., Palosuo, T.1., Salo, T.J., Helin, J.A., Pavlova, Y., Kahiluoto, H.M. (2010). A
Modelling Framework for Assessing Adaptive Management Options of Finnish Agrifood Systems to
Climate Change. Journal of Agricultural Science, Vol 2, No 2 (2010), p. 3-16. ISSN: 1916-9752. E-ISSN:
1916-9760. http://ccsenet.org/journal/index.php/jas/article/viewFile/4599/4888
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Uncertainty and risk in MACSUR
- Approaches pursued so far:

e Use of multi-model ensembles to evaluate
uncertainty and causes of uncertainty

Building on experience in COST action 734 and AgMIP

* Use of Impact Response Surface Method overlaid
with joint probabilities of projected changesin T
and Precip

Building on experience in modelling CC impacts in Finnish
ecosystems (S Fronzek & T Carter) and in the framework of
the ENSEMBLES project (Special Issue in NHESS; Carter et
al. 2011); related to C3MP (Ruane/AgMIP)



Probability density functions of spring barley yields during 1971-2000
and 2071-2100 under selected climate change scenarios at Utti
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IRS : Methods and data

* Impact response surfaces (IRS) were constructed from the results of the model
simulations

* |RSs represent the sensitivity of modelled crop yield to incremental changes in
precipitation (vertical) and temperature (horizontal), here represented as absolute
yields (baseline ~ 7500 kg/ha)
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Constructing impact response surfaces for analysing
risk of crop yield shortfall
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Change through coordinated
international efforts

one avenue towards more robust global results: AgMIP
(www.agmip.org)

regionally/EU: Modelling European Agriculture with Climate
Change for Food Security (www.macsur.eu)

Both networks coordinate efforts to improve agricultural models and develop
common protocols to systematize modelling for the assessment of climate
change impacts on crop production. They emphasize the importance of
integrating biophysical and socioeconomic analysis from farm to global scale

Some conclusions form Oslo, 10-12 Feb: a continuous monitoring of the ‘state of
knowledge’ is proposed .- e.g. To be coordinated by AgMIP closely collab. FACCE-MACSUR.

another avenue is international support to building bottom-up
“low-regret” adaptation strategies in response to an uncertain
climate and utilizing a.0. response diversity in management e.g. for

climate resilient cropping systems (can also be supported by crop
modelling; see, Kahiluoto et al., 2014a,b)



Further reading

* Asseng, S. et al. Nature Clim. Change 3, 827-832 (2013).

* Jones, R. N. Clim. Change 45, 403-419 (2000).

 Kahiluoto, H. et al., Global Environmental Change (in press) doi:
10.1016/gloenvcha2014.02.002

*Kahiluoto, H. et al., The role of modelling in buidling climate resilience in
cropping systems. Chapter 13 in J'Fuhrer & P Gregory, CABI (in press)

* Miller, C. & Robertson, R. D. Agric. Econ. 45, 85-101 (2014).

* Nelson, G. C. etal.. Proc. Nat. Acad. Sci. of the United States of America,
10.1073/pnas.1222465110 (2014)

* Rotter, R.P. et al. Nature Clim. Change 1, 175-177 (2011).

* Rotter, R.P. Nature Clim. Change 4, 251-252(2014).

* Rosenzweig, C. et al. Agr. Forest Meteorol. 170, 166-182 (2013).

* Wallach, D. et al. Characterizing and quantifying uncertainty

(AgMIP — MACSUR working paper — in preparation)

* Wheeler, T. & von Braun, J. Science 341, 508-513 (2013).

* White, J.W. et al. Field Crop. Res. 124, 357-368 (2011).

*Presentations in the uncertainty session 1.1 of the CrooM Oslo International
Symposium, 10-12 February 2014 at www.macsur.eu




