

Statistical learning approach for modelling the effects of climate change on oilseed rape yield

<u>Sassari, Italy</u>

<u>April 2014</u>

Behzad Sharif Jørgen E. Olesen Kirsten Schelde





# Outline

- Introduction & Background
- Materials and Methods
- Results
- Discussion



#### Introduction

• An introduction to statistical learning with applications in R (James et al) Springer



# What is statistical learning?

Assume X is a set of features and Y is a set responses:

• Set of approaches to estimate f in a way that  $Y=f(X)+\varepsilon$ 

• Systematic information that X provides about Y Based on traditional methods, inspired by data mining and machine learning





#### How would we like to use our learning?

#### Prediction

- When we are more interested in the results and its accuracy
- Inference
  - When we are more interested in understanding:
    - Which predictors are important?
    - What is the relationship?





#### Flexibility vs. Interpretability







#### The Bias-Variance Trade-off

- Is Ordinary Least Squares the most powerful regression technique for prediction?
- Expected test MSE=
  Var(f (x↓0))+Bias(f (x↓0))+Var(ε)
- More flexible models has less bias but more variance





#### Flexibility vs. Variance







#### **Advanced Regression Techniques**

| Technique               | How does it work?                                             | Significant Advantage                                      |
|-------------------------|---------------------------------------------------------------|------------------------------------------------------------|
| STEPWISE regression     | Selects significant predictors                                | Highly interpretable                                       |
| PLS Regression          | Supervised dimension reduction                                | Overcoming the problem of a lot of predictors              |
| PCR Regression          | Unsupervised dimension reduction                              | Overcoming the collinearity problem                        |
| <b>Ridge Regression</b> | Shrinks coefficients                                          | Powerful in prediction                                     |
| Lasso Regression        | Shrinks coefficients and<br>selects significant<br>predictors | Highly interpretable and<br>more powerful in<br>prediction |
| Elastic Nets            | Combination of Ridge<br>and Lasso                             | Combination of Ridge<br>and Lasso                          |



#### Materials and Methods

10



#### Oilseed rape data

- A protocol for data collection
  - Yield of oilseed rape
  - Sowing and Harvest Data, soil type, daily climatic data
- Yield data as the response variable, others as explanatory variables.





#### Dataset

- Denmark (data from other European countries are being received)
- 1992 to 2013
- 17021 observations (656 Standard trials)
- Daily climatic data
- Sowing Date, Harvest Date, Soil Type
- Yield data as the response variable





# Future projection

- LARS weather generator
- 50 years of climate data for each time period
- Biweekly averages over the climatic data
- For this case: HADCM<sub>3</sub> SRA1B
  - <sup>•</sup> 2011-2030
  - 2046-2065
  - 2080-2099





# LASSO

- Assume: Y = XB  $(Y = b \downarrow 1 x \downarrow 1 + ... + b \downarrow n x \downarrow n)$
- Lasro solves:  $\min RSS + \lambda / B / \beta$

|  |           | 1          | 2          | 3          | 4          |     | 58         | 59         | 60         | 61         | 62         | 63         | 64         | 65         |
|--|-----------|------------|------------|------------|------------|-----|------------|------------|------------|------------|------------|------------|------------|------------|
|  | August    | 87.9429298 | 87.9420156 | 87.9410425 | 87.9400575 | ••• | 78.3955461 | 77.2110109 | 75.9110855 | 74.4842712 | 72.9184797 | 71.1999414 | 69.3382979 | 67.5399233 |
|  | September | -15.169195 | -15.162977 | -15.156178 | -15.14877  |     | -6.3157453 | -5.5745207 | -4.7607189 | -3.8680091 | -2.8878353 | -1.8123396 | -0.5876092 | 0          |
|  | Oktober   | -49.177092 | -49.166249 | -49.154304 | -49.141102 |     | -44.39656  | -44.452283 | -44.513328 | -44.580484 | -44.654038 | -44.734852 | -44.837954 | -44.945914 |
|  | November  | 97.8902808 | 97.8528036 | 97.8115349 | 97.7659412 |     | 79.1937802 | 79.2047999 | 79.2166491 | 79.2300039 | 79.2443247 | 79.2602378 | 79.26239   | 79.5085851 |
|  | December  | -15.829326 | -15.794928 | -15.757063 | -15.715275 |     | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
|  | Januar    | 11.1103131 | 11.080508  | 11.0477025 | 11.0115264 |     | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
|  | Februar   | 42.6088532 | 42.5899244 | 42.5691003 | 42.5461762 |     | 15.9411544 | 14.8553107 | 13.6638107 | 12.3558417 | 10.920641  | 9.34534504 | 7.57380464 | 5.04364588 |
|  | Marts     | -20.621868 | -20.608043 | -20.592861 | -20.576206 |     | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
|  | April     | 313.115035 | 313.11448  | 313.113896 | 313.113335 |     | 291.985333 | 289.894515 | 287.599924 | 285.081502 | 282.317647 | 279.28426  | 275.938802 | 272.291491 |
|  | Maj       | 19.3431159 | 19.3611172 | 19.3809496 | 19.4028619 |     | 22.6609591 | 22.2706706 | 21.8424213 | 21.3722836 | 20.8564316 | 20.2902074 | 19.6150221 | 18.7572055 |
|  | Juni      | -285.13803 | -285.11493 | -285.08955 | -285.06164 |     | -253.37899 | -249.98263 | -246.25554 | -242.16448 | -237.67511 | -232.7477  | -227.29652 | -220.59935 |
|  | Juli      | 154.213441 | 154.198103 | 154.181254 | 154.162756 |     | 129.416158 | 126.747902 | 123.819665 | 120.605686 | 117.078582 | 113.207456 | 108.987037 | 104.313579 |



# Results

15



#### **Expected Test MSE**







# Selection of significant features

There are 87 explanatory variables in the case of biweekly average over the climatic • data. 200 Sow & Harvest Soil type day Temperature -200 Global radiation Rain August to July August to July August to July -400 -600 -800 -1000 20 70 30 40 50 60 80 **Aarhus University** Department of Agroecology



#### Yield response to futue climate



- Example for
- Northern Denmark,
- Clayey soil
- no advance in breeding,
- average sow and harvest dates





# Conclusion

- Statistical learning methods are useful techniques, especially for larger datasets.
- There are several easy-to-use advanced regression (and other) techniques, available in statistical packages.
- The usefulness of such methods depends on the data, spatial scales, objectives and complexities.



# Thank you!

20