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Introduction

* Anintroduction to statistical learning with applications in R (James et al)
Springer
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What is statistical learning?

Assume X 1s a set of features and Y is a set
responses:

- Set of approaches to estimate f in a way that
Y=7/(X)+¢
- Systematic information that X provides about Y

Based on traditional methods, inspired by data
mining and machine learning
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How would we like to use our learning?

 Prediction
= When we are more interested in the results and its
accuracy
 Inference

= When we are more interested in understanding;:
» Which predictors are important?
- What is the relationship?
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Flexibility vs. Interpretability
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The Bias-Variance Trade-off

- Is Ordinary Least Squares the most powerful
regression technique for prediction?

- Expected test MSE=
Var(f (x40 ))+FBias(f (x40 ))+Var(e)

« More tlexible models has less bias but more variance
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Advanced Regression Techniques

STEPWISE regression Selects significant Highly interpretable
predictors

PLS Regression Supervised dimension Overcoming the problem
reduction of a lot of predictors

PCR Regression Unsupervised dimension Overcoming the
reduction collinearity problem

Ridge Regression Shrinks coefficients Powerful in prediction

Lasso Regression Shrinks coefficients and  Highly interpretable and
selects significant more powerful in
predictors prediction

Elastic Nets Combination of Ridge Combination of Ridge
and Lasso and Lasso
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Oilseed rape data

- A protocol for data collection
= Yield of oilseed rape
= Sowing and Harvest Data, soil type, daily climatic
data

- Yield data as the response variable, others as
explanatory variables.
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Dataset

- Denmark (data from other European countries
are being received)

* 1992 t0 2013

» 17021 observations (656 Standard trials)
- Daily climatic data

- Sowing Date, Harvest Date, Soil Type

- Yield data as the response variable
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Future projection

LARS weather generator

50 years of climate data for each time period
Biweekly averages over the climatic data

For this case: HADCM3 - SRA1B

= 2011-2030

o 2046-2065

= 2080-2099
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LASSO

o« Assume:

- Lasro solves: minZSS+A/5/

xin)

Y=X8 (=01 xl1+..+bin
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Expected Test MSE
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Selection of significant features

- There are 87 explanatory variables in the case of biweekly average over the climatic
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Yield response to futue climate
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Northern
Denmark,
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average sow
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dates
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Conclusion

- Statistical learning methods are useful
techniques, especially for larger datasets.

- There are several easy-to-use advanced
regression (and other) techniques, available in
statistical packages.

» The usefulness of such methods depends on the
data, spatial scales, objectives and complexities.
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