

Land use science in the 21st century

Uwe A. Schneider

MACSUR mid-term Conference, Sassari 1-4th April 2014

Do we still need land use science in the 21st century?

No!

After development, agriculture is not important anymore!

Source: Several Professors of Economics

What about GDP of agricultural non-market impacts?

Costanza et al. The value of the world's ecosystem services and natural capital, Nature, 1997

Potential ecosystem service values

Turner W R et al. BioScience 2012

- Yes, agricultural GDP is declining.
- "GDP measures everything, in short, except that which makes life worthwhile" R. Kennedy (1968)
- Sustainable development calls for consideration and valuation of ecosystem services
- Besides, higher valued secondary GDP contributors are multipliers of primary sector values

Agricultural assessments are still important but include much more than food production

What is the research focus of highimpact agricultural models?

WEB OF SCIENCE

Basic Search

(agriculture OR agricultural)

Title

1991-2000 (citations)

- Habitat management to conserve natural enemies of arthropod pests in agriculture, ANNUAL REVIEW OF ENTOMOLOGY (2000), 759
- Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture, SOIL BIOLOGY & BIOCHEMISTRY, (2000), 620
- Source approach for estimating **soil and vegetation energy fluxes** in observations of directional radiometric surface-temperature, AGRICULTURAL AND FOREST METEOROLOGY (1995), **491**
- Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems, AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, (1995), 487
- Changes in the **abundance of farmland birds** in relation to the timing of **agricultural intensification** in England and Wales, JOURNAL OF APPLIED ECOLOGY, (2000), **423**

2001-2010 (citations)

- Agricultural intensification and the collapse of Europe's farmland bird populations, PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, (2001), 661
- Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences, AGRICULTURAL AND FOREST METEOROLOGY, (2001), 436
- Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse - an agricultural waste, WATER RESEARCH, (2002), 392
- Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture, REMOTE SENSING OF ENVIRONMENT, (2004), 385
- A synthesis of **carbon sequestration**, carbon emissions, and net carbon flux in agriculture: comparing **tillage practices** in the United States, (2002), **340**

The "optimal" land use assessment model

Insights from agro-environmental assessments

Biodiversity and Conservation Ecological Modeling and Assessment Environmental Science & Policy Biological Conservation

Agricultural Sector Analysis

Science Agricultural Systems Agricultural Economics Climate Change Economics Climatic Change Biomass and Bioenergy

Economic Potential

Agricultural greenhouse gas emission abatement

> Technical Potential

Emission Mitigation

Water Resources Research Agricultural Systems Energy Policy Energy Efficiency

1) Model scope

US Carbon Benefits of Reduced Tillage

Schneider et al., Agr. Syst., 2007

US Agricultural GHG Emission Mitigation

Schneider and McCarl, Agr. Econ., 2006

Insights

- Low scope assessments ignore synergies and tradeoffs
- Independent regional assessments tend to overestimate mitigation potentials

2) Model detail (resolution)

Resolution

More flexibility \rightarrow more mitigation

Climate change mitigation through livestock system transitions Havlik et al., PNAS, 2013

Homogenous Response Units

5 altitude classes

5 soil classes

Maps compiled by R. Sos based on GEOBENE Project Data

Insights

- Low resolution tends to underestimate response (adaptation, mitigation, resilience)
- High resolution increases computational costs
- Heterogeneous resolution and/or implicit depiction of resolution may help

3) Interdisciplinarity

Global biogeophysical interactions between forest and climate Brovkin et al., Geophysical Research Letters 36(7) 2009

Scales

- Genes
- Cells
- Individuals
- Communities
- Fields
- Farms
- Coun(r)ties, Biomes
- Global Markets

Source: Uwe A. Schneider, Diploma thesis

Source: The Royal Society, Gastner

Small scale analysts' tasks

Large scale analysts' tasks

• Transferability

- Aggregation
- Reduced form representation

- Heterogeneous resolution
- Disaggregation, Downscaling
- Implicit integration

4) Land use model development

- More complex models
- Method trade
- New datasets
- More model intercomparison
- Less Intuition
- More skeletons in closets

Crop models

EPIC

Effect of soil erosion on soil productivity.

CropSyst

Effect of climate, soils, and management on cropping systems productivity and the environment.

CERES

Prediction of the duration of growth, the average growth rates, and the amount of assimilate partitioned to the economic yield components of the plant.

Soil carbon dynamics Phosphorus cycling CO_2 effects, etc.

Models with similar features but different specifications and details

Source: L. Rasche

Method trade (e.g. Bioeconomics)

- General equilibrium models of ecosystems (e.g. work of J. Tschirhart)
- Vegetation models are solved as a Nash equilibrium
- Interactive ecological models (e.g. work of K.P. Freier, M. Hauhs)

See also: http://www-iam.nies.go.jp/aim/AIM_workshop/emf22/s5/Session5_07_Richard.pdf

Scientific Evolution

The "optimal" land use assessment model

Summary

