Land use science in the 21st century

Uwe A. Schneider

MACSUR mid-term Conference, Sassari 1-4th April 2014
Do we still need land use science in the 21st century?

No!

After development, agriculture is not important anymore!

Source: Several Professors of Economics
Agricultural Income (GDP Share)

- Least Developed
- Upper middle income
- Sub-Saharan Africa
- World
- EU

Source: own compilation based on data from OECD.stat
What about GDP of agricultural non-market impacts?
Value of ecosystems: US$33 trillion
1.8 times the current global GNP

Costanza et al. The value of the world’s ecosystem services and natural capital, Nature, 1997
Potential ecosystem service values

• Yes, agricultural GDP is declining.

• “GDP measures everything, in short, except that which makes life worthwhile” R. Kennedy (1968)

• Sustainable development calls for consideration and valuation of ecosystem services

• Besides, higher valued secondary GDP contributors are multipliers of primary sector values

Agricultural assessments are still important but include much more than food production
What is the research focus of high-impact agricultural models?

WEB OF SCIENCE

Basic Search

(agriculture OR agricultural)

AND

model
1991-2000 (citations)

- **Habitat management** to conserve natural enemies of arthropod pests in agriculture, *ANNUAL REVIEW OF ENTOMOLOGY* (2000), 759
- Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture, *SOIL BIOLOGY & BIOCHEMISTRY*, (2000), 620
- Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface-temperature, *AGRICULTURAL AND FOREST METEOROLOGY* (1995), 491
2001-2010 (citations)

• **Agricultural intensification** and the collapse of Europe's **farmland bird populations**, PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, (2001), 661

• Global dimming: a review of the evidence for a widespread and significant **reduction in global radiation** with discussion of its probable causes and possible **agricultural consequences**, AGRICULTURAL AND FOREST METEOROLOGY, (2001), 436

• Single- and multi-component **adsorption of cadmium and zinc using activated carbon** derived from bagasse - an agricultural waste, WATER RESEARCH, (2002), 392

• Hyperspectral vegetation indices and novel algorithms for **predicting green LAI of crop canopies**: Modeling and validation in the context of **precision agriculture**, REMOTE SENSING OF ENVIRONMENT, (2004), 385

The “optimal” land use assessment model

Insights from agro-environmental assessments
Agricultural Sector Analysis

- Global Average Calorie Intake
- Agricultural Sector Analysis
- Carbon price
- Emission Mitigation
- Economic Potential
- Technical Potential
- Agricultural greenhouse gas emission abatement

2005
- Land, Water Population
- Land, Water Population, GDP
- Land, Water Population, GDP, Yields

2030
- Vegetarian Food
- Animal Food

<table>
<thead>
<tr>
<th>Biodiversity and Conservation</th>
<th>Ecological Modeling and Assessment</th>
<th>Environmental Science & Policy</th>
<th>Biological Conservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Resources Research</td>
<td>Agricultural Systems</td>
<td>Energy Policy</td>
<td>Energy Efficiency</td>
</tr>
<tr>
<td>Science</td>
<td>Agricultural Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Economics</td>
<td>Climate Change Economics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climatic Change</td>
<td>Biomass and Bioenergy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EU Nature Reserve Distribution
1) Model scope

- Regions
- Sectors
- Goods
- Time Horizon
- Technologies
- Resources
US Carbon Benefits of Reduced Tillage

![Graph showing the relationship between soil carbon sequestration and carbon price.](image)

- Economic Potential
- Competitive Economic Potential
- Technical Potential

Schneider et al., Agr. Syst., 2007
US Agricultural GHG Emission Mitigation

Schneider and McCarl, Agr. Econ., 2006
Insights

• Low scope assessments ignore synergies and tradeoffs

• Independent regional assessments tend to overestimate mitigation potentials
2) Model detail (resolution)
More flexibility → more mitigation

Climate change mitigation through livestock system transitions
Havlik et al., PNAS, 2013
Homogenous Response Units

5 altitude classes

5 soil classes

Maps compiled by R. Sos based on GEOBENE Project Data
Insights

• Low resolution tends to underestimate response (adaptation, mitigation, resilience)
• High resolution increases computational costs
• Heterogeneous resolution and/or implicit depiction of resolution may help
3) Interdisciplinarity

Involved disciplines

- Strong assumptions
- Strong results
- Real assumptions
- Real results
Global biogeophysical interactions between forest and climate
Brovkin et al., Geophysical Research Letters 36(7) 2009
Scales

- Genes
- Cells
- Individuals
- Communities
- Fields
- Farms
- Coun(r)ties, Biomes
- Global Markets

Source: The Royal Society, Gastner

Source: Uwe A. Schneider, Diploma thesis
Small scale analysts’ tasks

• Transferability

• Aggregation

• Reduced form representation

Large scale analysts’ tasks

• Heterogeneous resolution

• Disaggregation, Downscaling

• Implicit integration
4) Land use model development

• More complex models
• Method trade
• New datasets
• More model intercomparison
• Less Intuition
• More skeletons in closets
Crop models

EPIC
Effect of soil erosion on soil productivity.

CropSyst
Effect of climate, soils, and management on cropping systems productivity and the environment.

CERES
Prediction of the duration of growth, the average growth rates, and the amount of assimilate partitioned to the economic yield components of the plant.

Soil carbon dynamics
Phosphorus cycling
CO$_2$ effects, etc.

Models with similar features but different specifications and details

Source: L. Rasche
Method trade (e.g. Bioeconomics)

- General equilibrium models of ecosystems (e.g. work of J. Tschirhart)
- Vegetation models are solved as a Nash equilibrium
- Interactive ecological models (e.g. work of K.P. Freier, M. Hauhs)

See also: http://www-iam.nies.go.jp/aim/AlM_workshop/emf22/s5/Session5_07_Richard.pdf
David Finnoff, John Tschirhart
Linking dynamic economic and ecological general equilibrium models
Scientific Evolution

Methods / Models

Data
The “optimal” land use assessment model
Thank you