FACCE-MACSUR

Report on the comparison of model linking protocols in different test cases

Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands

Pytrik Reidsmaa, Joost Wolfa, Argyris Kanellopoulosac, Ben F. Schaapb, Maryia Mandryka, Jan Verhagenb, Martin K. van Ittersuma

a Plant Production Systems Group, Department of Plant Sciences, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands.
b Plant Research International, Wageningen University and Research Centre, P.O. Box 616, 6700 AP Wageningen, The Netherlands.
c Operations Research and Logistics group, Wageningen University, Hollandseweg 1, 6706 KN, Wageningen the Netherlands.

Corresponding author:
Tel: 0031 317 48 55 78; Email: pytrik.reidsma@wur.nl Plant Production Systems Group, Department of Plant Sciences, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands.

Instrument: Joint Programming Initiative
Topic: Agriculture, Food Security, and Climate Change
Project: Modelling European Agriculture with Climate Change for Food Security (FACCE-MACSUR)
Start date of project: 1 June 2012
Duration: 36 months
Theme, Work Package: CropM 1
Deliverable reference num.: D-C3.4
Deliverable lead partner: Wageningen University and Research Centre
Due date of deliverable: month 32
Submission date: 2015-02-09
Confidential till: Article is published in Environmental Research Letters (only the abstract may be published)

Revision	Changes	Date
1.0 | First Release | 2014-02-XX
Abstract/Executive summary

Rather than on crop modelling only, climate change impact assessments in agriculture need to be based on integrated assessment and farming systems analysis, and account for adaptation at different levels. With a case study for Flevoland, the Netherlands, we illustrate that 1) crop models cannot account for all relevant climate change impacts and adaptation options, and 2) changes in technology, policy and prices have had and are likely to have larger impacts on farms than climate change. While crop modelling indicates positive impacts of climate change on yields of major crops in 2050, a semi-quantitative and participatory method assessing impacts of extreme events shows that there are nevertheless several climate risks. A range of adaptation measures are, however, available to reduce possible negative effects at crop level. In addition, at farm level farmers can change cropping patterns, and adjust inputs and outputs. Also farm structural change will influence impacts and adaptation. While the 5th IPCC report is more negative regarding impacts of climate change on agriculture compared to the previous report, also for temperate regions, our results show that when putting climate change in context of other drivers, and when explicitly accounting for adaptation at crop and farm level, impacts may be less negative in some regions and opportunities are revealed. These results refer to a temperate region, but an integrated assessment may also change perspectives on climate change for other parts of the world.
Table of Contents

Abstract/Executive summary ... 1
Table of Contents ... 2
Introduction .. 3
Methods .. 3
 Framework ... 3
 Drivers affecting crop yields in Flevoland at crop level 3
 Drivers affecting crop production and farm income in Flevoland at farm level 3
 Considering farm structural change ... 3
Results and Discussion ... 3
 Drivers impacting crop yields .. 3
 Crop yield change due to gradual climate change, adaptation, management and technological development .. 3
 Crop yield change influenced by extreme events, pests and diseases, and adaptation 3
 Drivers impacting farm income and crop production at farm level 3
 Impacts of farm diversity and farm structural change 3
Concluding remarks ... 3
References ... 3
Appendix I. Models and assumptions .. 7
Appendix II. Producer prices used in the scenarios 7
Appendix III. KNMI’06 climate change scenarios 7
Appendix IV. Crop modelling methods and results 7
 Summary ... 7
 Incorporating CO₂ effects on C4-crops .. 7
 Incorporating CO₂ effects on C3-crops .. 7
 Changes in WOFOST model parameters for KNMI scenarios 7
 Input data for model runs and adaptation to climatic change 7
Results .. 7
References in appendices .. 15
Introduction

Methods
Framework

Drivers affecting crop yields in Flevoland at crop level

Drivers affecting crop production and farm income in Flevoland at farm level

Considering farm structural change

Results and Discussion

Drivers impacting crop yields
Crop yield change due to gradual climate change, adaptation, management and technological development

Crop yield change influenced by extreme events, pests and diseases, and adaptation

Drivers impacting farm income and crop production at farm level

Impacts of farm diversity and farm structural change

Concluding remarks

Acknowledgements

This study was funded by the AgriAdapt project, within the Dutch Programme ‘Climate for Spatial Planning’, and the Climate Adaptation in Rural Areas and High-quality Climate Projections projects, within the Dutch Programme ‘Knowledge for Climate’.
References

Boogaard H, Wolf J, Supit I, Niemeyer S, van Ittersum M 2013 A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union Field Crops Res. 143 130-142

Britz W, Heckelei T, Kempen M 2007 Description of the CAPRI modeling system. Final report of the CAPRI-Dynaspat project (Bonn, Germany: Institute for Food and Resource Economics, University of Bonn)

Cassman K G 1999 Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture P. Natl. Acad. Sci. USA 96 5952-5959

Chiotti Q P, Johnston T 1995 Extending the boundaries of climate change research: A discussion on agriculture J. Rural Stud. 11 335-350

Fischer R A, Byerlee D, Edmeades G O 2014 Crop yields and global food security: will yield increase continue to feed the world? (Canberra: Australian Centre for International Agricultural Research)

Fischer R A, Edmaedes G O 2010 Breeding and cereal yield progress Crop Sci. 50 S85-S98

Wolf J, Mandryk M, Kanellopoulos A, Van Oort P, Schaap B, Reidsma P, Van Ittersum M 2011 Integrated assessment of adaptation to climate change in Flevoland at the farm and regional level *AgriAdapt Reports* no. 4&5 (Wageningen: Wageningen University and Research Centre)

Xiao D, Tao F 2014 Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades *Eur. J. Agron.* 52, Part B 112-122
Appendix I. Models and assumptions

Appendix II. Producer prices used in the scenarios

Appendix III. KNMI’06 climate change scenarios

Appendix IV. Crop modelling methods and results

Summary

Incorporating CO₂ effects on C4-crops

Incorporating CO₂ effects on C3-crops

Changes in WOFOST model parameters for KNMI scenarios

Input data for model runs and adaptation to climatic change

Results
References in appendices

Chen J 1984 Uncoupled multi-layer model for the transfer of sensible and latent heat flux densities from vegetation *Boundary-Layer Meteorology* 28 213-226

De Visser C L M 1990 Concept and development of a dynamic simulation model for onion growth *Acta Hortic.* 267 401-409

Goudriaan J 1977 Crop micrometeorology: a simulation study *Simulation Monographs* Pudoc, Wageningen, Netherlands

Goudriaan J 1990 Primary productivity and CO2 In: Goudriaan J, van Keulen H and van Laar H H (Eds.) *The greenhouse effect and primary productivity in European agro-ecosystems* Pudoc, Wageningen, Netherlands, pp 23-25

Goudriaan J and de Ruiter H E, 1983 Plant growth in response to CO2 enrichment, at two levels of nitrogen and phosphorus supply. 1. Dry matter, leaf area and development *Neth. J. Agr. Sci.* 31157-169

Goudriaan J and Unsworth M H 1990 Implications of increasing carbon dioxide and climate change for agricultural productivity and water resources In: Impact of carbon dioxide, trace gasses, and climate change on global agriculture *ASA Special Publication no. 53. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America*, Madison, USA, pp 111-130

Kimball B A 1983 Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations *Agronomy Journal* 75 779-788

C, Tabeau A, Willenbockel D 2014 Climate change effects on agriculture: Economic responses to biophysical shocks *P. Natl. Acad. Sci. USA* 111 3274-3279
Wolf J and van Oijen M 2002 Modelling the dependence of European potato yields on changes in climate and \(\text{CO}_2\). *Agric. Forest Meteorol.* 112 217-231
Wolf J, Mandryk M, Kanellopoulos A, Van Oort P, Schaap B, Reidsma P, Van Ittersum M 2011 *Integrated assessment of adaptation to climate change in Flevoland at the farm and regional level* AgriAdapt Reports no. 4&5 (Wageningen: Wageningen University and Research Centre)