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Abstract 

This reports sets out an outline approach to create definitions of uncertainty and how it might be 
classified. This is not a prescriptive approach rather it should be seen as a starting point from 
which further development can be made by consensus with CropM partners and across MACSUR 
Themes. We propose both a numerical quantification of uncertainty and text based classification 
scheme. The rational is to be able to both establish the terms and definitions in quantifying the 
impact of uncertainty on model estimates and have a scheme to enable identification of 
connectivity between types and sources of uncertainty. The aim is to establish a common set of 
terms and structure within which they operate that can be used to guide work within CropM. 
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Part 1: Introduction 
The purpose of Task C4.1 is to create a common conceptual framework and a complimentary set 
of methods, protocols and communication strategy that will ensure both standardized procedures 
for scenario development and impact uncertainty analysis whilst maintaining flexibility regarding 
national level capabilities. The Task will provide an overview of uncertainty in using crop models 
for future prediction taking a holistic approach, evaluating the sources of uncertainty ‘from 
beginning to end’ in the model application process i.e. external (input) and internal (model) 
sources. Evaluating consistency among climate and agricultural projections is a means of 
evaluating how uncertainty is transmitted through the modelling chain. A primary purpose is to 
facilitate error attribution to sources in order to better understand what can be done to reduce 
uncertainty and communicate its significance. A key focus has been the way in which ensembles 
of models are used to gain information about uncertainty (e.g. Palosuo et al 2011) and in 
developing a common set of terms and typology of uncertainty.  

This purpose of this report is to provide details on progress made for Deliverable C4.1.1: Defined 
terms and typology of uncertainty, in the context of overall progress within task C4.1. 

This report sets out concepts to cover two key aspects: the numerical quantification of 
uncertainty and text based structures to describe and classify sources. The first is focused on 
empirical based methods whilst the second aims to develop a classification protocol (typological 
and / or taxonomic). The report is thus separated into three parts: 

 Part 1 considers the background of uncertainty and provides some broad definitions; 

 Part 2 considers the quantification of uncertainty, focusing on crop modelling; 

 Part 3 develops a conceptual classification framework that places crop modeling within the 
wider context of MACSUR. 

The rational for this structure is the recognition of the possible need for both numerical 
quantification and text based classification, to help meet the “uncertainty information needs” 
(Gabbert et al 2010) of model output users, particularly those involved in policy development, and 
in the difficulty of communicating uncertainty (Manning 2003).  

It is also important to recognize the need for different perspectives in viewing uncertainty. By 
adopting a modellers’ view of uncertainty rather than a decision makers’ perspective, a 
classification scheme may omit some relevant sources of uncertainty (perhaps even the most 
important ones) that arise before and after scientific models are applied (Norton et al 2006). 

It should be recognized that the development of the terms and classification (typology) of 
uncertainty needs to be fluid in that there is need for flexibility in reviewing and re-defining them 
as work progresses within CropM. As such the proposed terms and typology set out here should 
be used as guides rather than as absolute. Therefore this document forms the basis for an 
evolving process of on-going review and refinement through consensus building during the course 
of applied modeling activities. This will enable consensus to be built across the range of Partners 
involved and then framed in the context of the actual modeling work undertaken. 

Further, this report does not deal with the methods to reduce uncertainty (i.e. as in Tasks C4.2, 
C4.3 and C4.4) but seeks to provide a set of defined terms that help such a purpose. 

Background 
In order to manage the contribution of models to decision making, it is important to understand 
the uncertainties associated with the predictions models make. Uncertainty is a feature that 
occurs within all aspects of research, and varies in the degree to which researchers are able to 
identify, quantify and classify it. Within MACSUR there are multiple sources of uncertainty that are 



either inter-connected with, or isolated from, the work of CropM. There is need however to 
develop a framework and processes that facilitate the identification of sources of uncertainty, and 
methods that enable quantification (in order to evaluate relative importance), that whilst focused 
on the work of CropM, is relevant to the other work Themes and overall goals of MACSUR. In this 
respect there is a need to better understand the sources of uncertainty in model outputs and how 
this propagates through to consequences of output use. This is in order to both reduce 
uncertainty (i.e. by improving data and models) and quantify it in order to better understand the 
range of uncertainty in model outputs and consequences of their use. However, there are likely to 
be multiple sources of uncertainty which may not be quantifiable individually, hence we need to 
know how to classify and describe sources in order to evaluate the relative importance and 
contribution of each source. 

A central starting point in this process is thus to develop a common set of terms to be used and 
establish a classification scheme (typology) that captures the range of types and sources and 
identifies how these may influence the different stages of the CropM and overall MACSUR 
process. 

An important issue to recognise is that uncertainty will mean different things to different people 
(i.e. crop and economic modellers), and will have different levels of emphasis depending on scales 
of interest (i.e. climate and crop). Whilst the focus of this Task is to consider the range of 
uncertainty within CropM, it is important to bear in mind the whole coverage of MACSUR and the 
flow of information (and associated uncertainty) within it. Hence the development of common 
terms and typology needs to take into account the wider implications outside of CropM. 

Integration with other Work Packages and Themes 
The development of the common terms and typology is to some extent bounded by the 
developments in other CropM WPs, particularly the availability of data for modelling purposes (i.e. 
Data Sharing and Data Management Protocols) and how this determines the extent to which 
modelling takes place. As the research plans for modelling tasks have evolved, it has become 
more possible to identify the scope within which the quantification methods, terms and 
classification typology are operating. 

There are likely to be similarities in issues of uncertainty within LiveM and TradeM, hence there is 
need for awareness with the C4.1 work to consider how developments of a framework for CropM 
can also be of use and relevance to the other Themes. Whilst there are no formal integration 
mechanisms yet, one option is to facilitate the inclusion of LiveM and TradeM contributions of 
information to more widely populate the classification of sources. 

Definitions of Uncertainty 
Definitions will vary depending on the context to which the term is being applied. In recognising 
this, it is possible to consider a range of definitions in order to identify one that suits the purposes 
of CropM and MACSUR. This is an open-ended discussion, where consensus can be agreed on a 
definition of uncertainty for CropM. 

Walker et al (2003) proposed a general definition as “any deviation from the unachievable ideal of 
completely deterministic knowledge of the relevant system”. Funtowicz and Ravetz (1990) 
describe uncertainty as a situation of inadequate information, which can be of three sorts: 
inexactness, unreliability, and border with ignorance.  

Within the AgMIP Uncertainty group, an initial definition has been proposed as “A state of lack of 
knowledge or incomplete knowledge, or more completely: A state of incomplete knowledge 
(about the future), often with a random component reflecting random processes (e.g. rolling of 
dice).  Total uncertainty is a combination of random (aleatory) uncertainty and epistemic 
uncertainty (the incomplete knowledge due to complexity of world). Probability is viewed as the 



standard measure of uncertainty”. A quantitative definition of the uncertainty in predicting some 
quantity is the distribution of the true value of that quantity, given an estimated value.  

It is also important to distinguish between prediction uncertainty for the past / current time 
where there is a range of available data against which to evaluate uncertainty, and future 
conditions, for which data does not exist. 

Note; text in Italic denotes terms that we may want to refine definitions for and adopt in order to 
have a common language. 

Types and sources of uncertainty 
An often use distinction in terminology is between types and sources of uncertainty (i.e. Refsgaard 
et al 2007).  

 Types - refers to how the uncertainty may manifest itself in a model and the estimates it 
makes. 

 Sources - refers to the origin of the uncertainty. 

These may be referred to as the “dimensions of uncertainty”.  Walker et al (2003) suggest an 
uncertainty matrix which distinguishes different types and sources of uncertainties in order to 
facilitate uncertainty classification. This should be considered and developed by consensus with 
CropM partners. 

The definition of terminology and conceptual basis for how types and sources can be further 
divided into sub-categories has been contested (i.e. Walker et al 2003, Norton et al 2006, 
Refsgaard et al 2007, Gabbert et al 2010). To date there has been little in respect of consensus of 
terms and classification. As Norton et al (2006) point out, it is important to structure the terms 
and classification scheme in respect of the context in which the research and desired end use is 
operating within. This implies that there may be a need for ‘CropM and MACSUR’ specific set of 
definitions and classification scheme.  

  



Part 2: Quantifying uncertainty 
This section focuses on the quantification of uncertainty in predictions by crop models.  

A complete description of uncertainty of some predicted outcome, say Y, is the probability 
distribution of Y.  For example, this could be described by the cumulative probability distribution 

function ( )YF y  which is the probability that Y y .  

Often we have some predictor of Y, say Ŷ (for example a model). In that case we could be 
interested in the uncertainty  in Y, given Ŷ. In general the model depends on some set of 
explanatory variables X (see below), so that if we fix X, we fix the predictions of the model. The 

cumulative probability distribution would then be ˆ( )|
( )

Y Y X
F y , which is the probability that  

ˆY Y y  for fixed values of X or equivalently of Ŷ . 

A third case is that where the predictor itself has some uncertainty. We will see multiple examples 
below. In this case we are still interested in the distribution of Y-Ŷ, but now this distribution 
describes both the variability in Ŷ and the variability in Y around Ŷ. The cumulative probability 

distribution would still be ˆ( )|
( )

Y Y X
F y , but now this is the probability that  ˆY Y y  for fixed X 

where both Y and  Ŷ  vary. 

The cumulative distribution function gives very detailed information about the uncertainty in Y. 
Often we can’t obtain such detailed information. In such cases one often must make do with a 
single number which summarizes the uncertainty. This is typically the mean square of the 
uncertain quantity.  If Ŷ is fixed this is  

 
2

ˆ ˆ ˆ( ) ( ) |MSEP Y E Y Y Y  (0) 

where MSEP(Ŷ)  is the mean squared error of prediction for fixed predictor Ŷ, and the expectation 
is only over Y.   It is easily shown that the above expression for MSEP(Ŷ) is the sum of the variance 
of Y (or equivalently of Y-Ŷ) plus the squared bias: 

 
22

|
ˆ ˆ( ) | ( | ) ( | ) |X Y X XMSEP Y E E Y X E Y X E E Y X Y X  (0) 

where ˆ |Y X  is a constant. 

If both Y and Ŷ are uncertain, then the expectation is over both Y and Ŷ:   

 2ˆ( )MSEP E Y Y  (0) 

This can be decomposed into three terms:  
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(0)  

Compared to eq. (0), there is now an additional term (the last term on the right hand side) that is 
the variance of the predictor at each X, averaged over X.  

Quantifying uncertainty then involves estimating the distribution of Y-Ŷ, or less ambitiously, 
estimating the value of MSEP(Ŷ) or MSEP. 



Error and uncertainty 
Suppose that we are in the situation where we are making repeated predictions for situations 
which can be assumed to represent some common underlying population. In particular, suppose 
that  we are using a crop model to make multiple predictions in some target population. For 
example, this could be predictions of maize yield in southern France under current climate and 
typical management. In this case the error in past predictions is a measure of uncertainty for 
future predictions.  

“Error” is a measure of the distance between past measurements and predictions. “Uncertainty” 
is a measure of the distance between future predictions and future measurements. Past error can 
be used to approximate future uncertainty, if both refer to the same underlying population (i.e. 
the same range of conditions).  

The sources of uncertainty in a crop model 
A crop model can be succinctly written as ( ; )f X   where X are the explanatory variables (in 

general daily weather, soil characteristics, initial soil conditions and management), θ are the 
parameters in the model and f is the function that translates X and θ into the model outputs (for 
example yield). Each of the above terms involves uncertainty. 

Explanatory variables 
There can be uncertainty in the explanatory variables. The weather data may be from a weather 
station that is at some distance from the field in question, so those data are only an 
approximation to the true weather data. Soil characteristics may just be estimated (for example 
using a pedotransfer function to estimate water holding capacity from texture). Initial soil 
conditions are often not available, so are estimated using the model or expert opinion. 
Management may not be fully recorded, for example one might have only total nitrogen 
application and not the dates of application. 

One can often quantify the uncertainty in explanatory variables based on past data (for example, 
cases where both pedotransfer functions have been used and true water holding capacity has 
been measured) or expert opinion (for example, it may be known that in the population 
considered nitrogen is generally applied in three applications, and the range of dates may also be 
known.)  

There are also cases where it is difficult or impossible to quantify the uncertainty in explanatory 
variables. When using crop models to evaluate the impact of climate change, for instance, the 
explanatory variables include future weather, which is unknown and whose uncertainty is difficult 
to estimate. In this case one may simply replace the uncertain weather by a finite number of 
possible scenarios.  

Parameters 
Parameter uncertainty is particularly complex. The first question is “what are the true parameter 
values?”. Wallach, D. (2011) suggests that the true parameter values must be defined not in the 
context of the overall crop model, but in the context of the individual equations within the model. 

Suppose that an individual equation is ˆ ( , )ind ind ind indY f X  where the superscript “ind” 

emphasizes that this refers to one of the equations in the model. The true parameter values are 

then the parameters such that ( ) 0E  for all indX , where ˆind indY Y is the difference 

between the measured and modelled values. This is just the standard definition of the true 
parameters in regression.  

In many cases the individual equations in a crop model have been studied individually. An 

example would be the relation between biomass accumulation ( )B  and intercepted 

photosynthetically active radiation (IPAR), usually assumed to be linear: *B RUE IPAR , 



where RUE (radiation use efficiency) is a parameter. The uncertainty in parameter values can 
often be taken from the range of values found in the literature, in studies of the individual 
equations. This range is often large. For the parameters in the SUCROS87 and LINTUL models, 
Metselaar (1999) found an average coefficient of variation of 38%. A crop model may also have 
parameters which are constructs of the model, and for which no values based on studies of the 
individual equation exist. The uncertainty in these parameters can then only be very approximate.  

When the model is calibrated, that is some of the parameters are changed to give a better fit to 
the data, this changes the uncertainty in the parameters used to calibrate the model. Those now 
should be considered as calibration parameters, and their true values are now the values that 
minimize overall model error. This is different from the true parameters for the individual 
equations. These parameters have now become adjustment factors for the overall model. Their 
uncertainty is related to the data used for calibration, just as in classical regression.  

The model 
In general we only approximate the relationships in the individual equations in a model. There 
may be uncertainty in these relationships.  

In some cases, it may be possible to quantify this uncertainty. If for example, one chose a 
particular function to represent a relationship, but this choice was somewhat arbitrary and other 
functional forms could have been chosen, then the uncertainty could be represented by equal 
probability on each form. In other cases, it may be very difficult to quantify this uncertainty, 
because one simply doesn’t know what the range of plausible functions is. 

Residual error 
Residual error measures the difference between the model predictions and the measured value.  
Even if one has the correct explanatory variables, the correct parameters and the correct 
functional form, in general a model does not explain all the variability in the response and so 
residual error will not be zero. In that case, residual error measures how much of the variability in 
the response is left unexplained by the explanatory variables of the model. If there are errors in 
the explanatory variables, parameters or functions, residual effort will be larger.   

Approaches to estimating uncertainty 
It would be very difficult to estimate uncertainty in crop model predictions by looking at the 
combined effects of uncertainty in each of the sources of uncertainty. In fact, this is not done. 
Rather, there are two major pathways for estimating uncertainty in crop models. 

Based on error in past comparisons of simulated and observed results 
We have already said that if the past is like the future (if our sample from the past comes from the 
same population as the situations for our future predictions), then past error allows us to estimate 
future uncertainty. 

Thus if we have observed and simulated values from the past (and assuming that we haven’t used 

those data to calibrate the model), then we can estimate MSEP as 
2

1

ˆ(1 / )
n

i i

i

MSE n Y Y  

where iY   is the observed value of the ith measurement, ˆ
iY   is the corresponding simulated value 

and n is the number of measurements.  

This greatly simplifies our considerations of uncertainty. It implies that we do not have to start in 
each case from first principles in order to take into account all possible sources of error. In 
predicting yield using a crop model for example, the distribution of errors for a sample takes into 
account all sources of error; parameter error, error in input variables, errors in equations and 
residual error.  Note that the uncertainty here refers to uncertainty in predicting the observed 
value of Y. This is not necessarily the true value of Y, since there may be measurement error. 



 

As already emphasized, the use of past error to estimate future uncertainty relies on the 
assumption that the error of future predictions will have the same distribution as the error of past 
predictions. This in itself may be subject to some uncertainty. It is not easy to completely identify 
the range of conditions that have been sampled. For example, even for “current conditions”, 
samples from several years ago may not have the temperature extremes of more recent years, or 
there may be changes in the complex of pest diseases or weeds.  

Empirical estimations of uncertainty can be combined to obtain estimations of uncertainty for 
more complex situations.  Suppose for example that we want to estimate the uncertainty in 
regional predictions of yield, based on using a crop model for a small number of fields in the 
region. One possibility is to express the uncertainty in the regional estimation as the result of two 
sources of uncertainty; the uncertainty in extrapolating from the sample of fields to the region, 
and the uncertainty in predicting for each field in the sample. The first uncertainty is related to 
sampling uncertainty, which can be estimated on the basis of the sampling scheme. The latter 
uncertainty can be based on the distribution of errors in past uses of the model for fields in the 
region. Thus the overall uncertainty is the result of just two quantifiable sources of uncertainty, 
and we do not need to take into account all the underlying sources of uncertainty in the system.  

Estimation of MSEP does not require assumptions about the distribution of errors, since we are 
only estimating the average squared error and not the detailed form of the distribution of Y-Ŷ. If 
we are willing to make distributional assumptions, then we can get information about the 
distribution of Y-Ŷ. This can be either in a frequentist or Bayesian framework.  

A Bayesian framework is particularly convenient for the evaluation of uncertainty. If model 
parameters are estimated using a Bayesian algorithm, then the result is an empirical joint 
distribution of the model parameters and model residual error. This can then be used to derive an 
uncertainty distribution for any quantity that is calculated using the model.  An example is given in 
(Wallach, Keussayan, Brun, Lacroix, & Bergez, 2008). Note however that this calculation does not 
take into account the uncertainty related to the distributional hypotheses underlying the Bayesian 
calculation; it assumes that those hypotheses are correct.  

Uncertainty analysis to quantify the uncertainty from specific sources 
The second major pathway for estimating uncertainty is often called simple “uncertainty analysis”, 
though in fact it is concerned with only specific contributions to uncertainty. 

Suppose that we want to know how much uncertainty in output from our model  (say yield 
prediction) is due to uncertainty in an explanatory variable, say soil  water holding capacity. A 
common way of doing this is simply to estimate the range of possible values for soil water holding 
capacity, then run the model with each of these values. The range of simulated yields is the 
uncertainty in the model outputs due to uncertainty in soil water holding capacity. Of course this 
is easily generalized to any other explanatory variable or combination of explanatory variables. It 
could also be applied to parameter uncertainty and uncertainty in the functional forms of the 
equations in the model. 

In fact, this is an estimate of the third term on the right in eq. (0). As that equation shows, we are 
in this case only estimating one contribution to overall uncertainty; that related to uncertainty in 
our predictor. However, it does allow one to examine how specific model errors contribute to the 
uncertainty in model predictions.  

If several model inputs are treated as uncertain (several explanatory variables or, more often, 
multiple parameters), then uncertainty analysis quantifies the overall contribution to variability in 
the model predictions. It can then be of interest to identify the separate contributions of the 
uncertain inputs. This is the subject of sensitivity analysis . In one form, it is a method of 



identifying how much of the variance of model predictions is due to each of the uncertain inputs 
individually and in interaction.  

 

  



Part 3: Classification scheme of Uncertainty 
There are two basic approaches to classification: typology and taxonomy. Typology has been 
described as “The study or systematic classification of types that have characteristics or traits in 
common”. Typology conceptually separates a given set of items multi-dimensionally. A key 
characteristic of a typology is that its dimensions represent concepts rather than empirical cases. 
Taxonomies (synonymous with systematics) however differ from typologies in that they classify 
items on the basis of empirically observable and measurable characteristics. 

Both can be developed within a specific context and for particular purposes. In developing a 
framework for assessing and communicating uncertainty (including methods for visualisation) for 
CropM (and wider interests of MACSUR), a classification may be best developed by combining the 
attributes of both typology and taxonomy and integrating with numerical quantification 
approaches. This can be tailored to the needs of both researchers (in conducting modelling 
exercises) and end users of CropM outputs. 

Purpose of a classification 
The purpose of developing a classification is to achieve 8 key aims: 

1. Help identify and describe the types and sources of uncertainty. 
2. Structure the inter-connectivity between types and sources of uncertainty. 
3. Facilitate the identification of the relative importance of types and sources. 
4. Help identify which explanatory variables can and cannot be accounted for in quantification. 
5. Help to develop by consensus a common set of terms (numerical and linguistic) for use by 

practitioners and end users. 
6. Help facilitate the incorporation of end user perspectives. 
7. Help inform expert opinion in interpreting significance of uncertainty. 
8. Help track changes in uncertainty description and attribution to sources, i.e. parameters 

(range of values) becoming calibration parameters (changed and associated with calibration 
data). 

A classification could be focused on providing structured text based descriptions of the individual 
explanatory variables and their inter-connectivity (linkages within the structure). This can be set 
out as existing across multi-dimensional categories, e.g. broad areas of uncertainty, for example 
climate modelling (and projections produced) and agricultural modelling. For each individual area 
of the whole modelling exercise (covering both areas at a large range of scales), there will be a 
range of uncertainty classes associated with it. For each class there may be an associated set of 
components, made up of things like individual parameters, things measured in the field, data etc.  

It is important to note that this is not a hierarchical structure of importance, rather it is a structure 
within which to help organise descriptions. In other words, it does not infer any level of 
importance to any one area, type or component, but facilitates the identification of the 
connectivity of importance. 

It is not possible to capture every single component and the uncertainty associated with it, but it is 
possible to have open-ended lists that can be added to. Instead it is possible to classify the range 
of classes (and where possible identify the individual components within them), and the inter-
connectivity between them.  

Some key principles of uncertainty 
 

 Uncertainty is not simply the absence of knowledge. 

 New information can either decrease or increase uncertainty (e.g. divergence in climate 
model estimates). 

 Not all uncertainty sources can be ‘quantified’ (i.e. Harremoës 2003) 



 

Terms of Uncertainty within a classification 
Care is needed in developing common terms for uncertainty for use within a research discipline, 
as there are justifiable differences in definitions of terms between disciplines, depending on the 
context in which they are used (and possibly legacy of earlier research). For example economists, 
politicians or risk managers may have different definitions for terms like ‘ignorance’. Thus taking 
‘standard’ terms may not be appropriate for the purposes of CropM. In this respect it is important 
to define the boundaries to which the terms are applicable.  

On this basis we have set out a range of terms to help structure a classification. It first 
distinguishes between the types and sources of uncertainty, then considers a broad categorisation 
within sources to help organise the placement of individual sources into groups. The details set 
out below are only a proposal, and therefore may be adapted and developed to better suit the 
needs of CropM.  

It is important to distinguish between types and sources: types refers to how the uncertainty may 
manifest itself in a model and the estimates it makes; sources indicate the origin and where they 
are located (either external to or within the model). 

 

Types of Uncertainty 
Defining types is problematical in that how uncertainty manifests itself within a model is going to 
be variable depending on the model itself, i.e. manifestation will be different between models 
with varying levels of complexity and inter-connectivity between sub-models. It is worth repeating 
here the differences between errors and uncertainty:  

“Error” is a measure of the distance between past measurements and predictions. “Uncertainty” 
is a measure of the distance between future predictions and future measurements. Past error can 
be used to approximate future uncertainty, if both refer to the same underlying population (i.e. 
the same range of conditions). 

Evidence of error manifestation can inform uncertainty manifestation to some extent, but we will 
need to evaluate how safe it is to assume that past error manifestation represents future error. 

It is also helpful to think of the error manifestation in terms of whether they are additive, 
multiplicative or compensatory and how this impacts on the consequences of model output use. 
In this respect we are most interested in the propagation of errors and how our understanding of 
uncertainty can inform the likely details of propagation under predicted future conditions. 

 

Sources of Uncertainty 
A conceptual issue here is in separating sources of errors and sources of uncertainty. In a practical 
sense in developing a classification it is easier to treat the two as the same and then consider the 
context in which the classification is applied: to either the distance between past measurements 
and predictions or future predictions and future measurements.  

There are various dimensions of the sources of uncertainty which can be defined, making it is 
possible to set the basis on which we might establish an accepted number of common terms to be 
used in further research activities and output communications. Appendix 1 contains an initial 
table of commonly used terms and their proposed definitions. In this report we propose three 
terms covering the scales of sources of uncertainty in crop modelling (equivalent to a range of 
scales of explanatory variables). These are Areas, Classes and Components of uncertainty that 
exist at three interacting hierarchical levels. Examples: 

 Areas: climate prediction, crop simulation 



 Classes: scenarios, measurements, models etc. 

 Components: equations, individual parameters (including calibration parameters) etc. 

Collectively these make up the sum total of Sources of uncertainty. What is needed is the evidence 
to attribute the estimation and quantification of uncertainty to sources via our understanding of 
the inter-connectivity between components and classes, in order to better understand the relative 
importance of each and the consequences on model output. We further introduce the concept of 
the dimensions (below) of uncertainty and how this can be used to frame the complete range of 
sources and how to identify hierarchies and relative levels of importance. 

 

Explanatory Variables

Areas
i.e. agriculture, 

climate prediction

Classes
i.e. scenarios, technical, inputs, parameters

Components
i.e. individual model parameters

 

Figure 1. Overview of structure to represent types and sources of uncertainty. 

 

Areas of Uncertainty 
In the context of CropM it is possible to identify two broad areas of uncertainty: climate model 
prediction and crop model prediction (in the wider context of MACSUR, areas also include 
livestock, socio-economics, policy etc.). This helps establish the boundaries within which other 
terms are applicable. Both contain a large range of uncertainty issues, so it is helpful to separate 
these into Classes. It is important to recognise the boundaries of these Areas and that there are 
external factors and drivers, primarily socio-economic and policy based, that influence the Areas 
we are able to focus on. 



Classes of Uncertainty 
The concept of sub-dividing areas into classes is that it helps separate into more easily understood 
and interpreted definitions.  

General classes: 

 Context: is an identification of the boundaries of the system to be modelled, usually 
identified at the problem framing stage. This encompasses the elements of the real world in 
the model and those that are outside. 

 Model outcome uncertainty: is the accumulated uncertainty associated with the model 
outcomes of interest to the range of end users (stakeholders) utilising the model outputs. 

More specifically, the area of climate modelling uncertainty can be categorised into a broad range 
of classes (note this list is open ended and can be re-defined and added to):  

 Scenario: this deals with the socio-economic and environmental relationships with the rate, 
type and extent of greenhouse gas emissions, and measures undertaken to mitigate against 
those emissions, or the capacity of ecosystems to provide ecosystems services (particularly 
climate regulation). 

 Measurement: this is the uncertainty associated with the measurement of observation data. 

 Data extent: is concerned with the spatial and temporal extent to which observational data 
is relevant. 

 Process: Where there is only partial knowledge of the climatic processes (associated with 
measurement uncertainty and gaps in data). 

 Feedbacks: related to Scenarios and Process, there are uncertainties associated with climate 
feedbacks  

 Technical: this is concerned with the ability to adequately represent the Process 
mathematical representations with computer software and code. 

 Model: deals with the conceptual basis and structure of the models and mathematical 
representation, as equations, of processes and the way these are integrated. 

 Inputs: is concerned with the quality of data 

 Parameterisation: the ability, limited by Measurement and Process uncertainty, to provide 
appropriate parameter values, and ability to conduct calibration. 

 Skill: the level of ability of the people involved in taking measurements, researching 
concepts, developing and using models. 

 Representation: the ability of climate models to represent localised weather phenomena 
due to the spatial scale of representation (i.e. GCM grid cell size), the diversity of topography 
within it, and ratio of land to sea per cell. 

 

The sources of uncertainty can be categorised into a broad range of classes, which have common 
elements to those of the climate: 

 Measurement: errors that occur in making observations (i.e. field experiment 
measurements) and their spatial and temporal representation. Since the data are used to 
parameterize crop models, these errors contribute to prediction uncertainty.  

 Process: where there is partial understanding of the processes determining crop growth. 

 Parameters: Where the optimal model parameters are not precisely known. 

 Input variables: Where there is uncertainty in weather, soil characteristics, initial conditions 
or management or any other model inputs.  

 Skill: for example the ability of people to understand and use crop models. 

 Technical: this is concerned with the computing and software coding. 

 Model: this is concerned with the model structure, equations and integration of processes.  



As can be seen from the comparison of the two key areas, there are common types with 
effectively the same definitions (but variable in terms of the practical aspects). 

Components of uncertainty 
These encompass the individual parts that make up the sum total of the classes. For example, in a 
crop model, components may be things like the soil texture values, phenology or input weather 
data. To some extent these components are relatively easy to list and identify relationships with 
others. 

Next steps 
Having initiated the process of defining terms and developing a typology for uncertainty, it is next 
necessary to integrate these with the on-going efforts within WP4 itself and the other WPs whilst 
being aware of the efforts and requirements of the other Themes. 

Having initiated the development of a framework and proposed definitions of terms, the next step 
is to develop the methods that formalises consensus on the framework structure and agrees 
definitions. This also needs to be integrated with the on-going modelling work in order to help 
guide the application of uncertainty quantification methods at appropriate stages of the 
modelling. 

We will disseminate this report to CropM partners and develop a protocol for consensus building 
in line with the development of work within other WPs, as part of Deliverable C4.2.1. 

It is also important to include end-user stakeholders’ perceptions and understanding of 
uncertainty in order to develop communication and dissemination processes (i.e. in line with 
WP6.3-4 Develop strategies for engagement on adaptation and mitigation with national and EU 
policy makers and with the agro-food chain sector). Thus it is important to structure the terms and 
classification scheme in respect of the context in which the research and desired end use will be 
operating within. 

Through engagement with CropM Partners we will seek to build consensus on what is practical in 
terms of conducting quantification of uncertainty, and in developing the classification scheme 
structure and definition of terms used within it. 
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Apendix 1: Initial proposed term and definitions to be used in CropM. 
 

Table 1. Sample initial terms and definitions to be used in CropM 

Term Definition Ref 

Areas Broad descriptions of research areas, such as climate 
prediction. 

 

Attribution The attribution of an error to a source of uncertainty  

   

Boundaries The areas of cross over between research subjects  

   

Components Individual explanatory variables.  

   

Classes A sub-division of an Area, with each class being made up 
of a number of components. 

 

   

Errors Measure of the distance between past measurements and 
predictions 

 

   

Propagation   

   

Source   

Types How the uncertainty may manifest itself in a model and 
the estimates it makes 

 

   

Uncertainty 
matrix 

  

   

 

 

 

 

 

 

 

 

 

 

 

 


