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Abstract/Executive summary 
Communication is the key link between the generation of information by MACSUR about 
the uncertainty of climate change impacts on future food security and how information is 
used by decision makers. It is therefore important to make available the common tools for 
reporting uncertainty, with a discussion of the advantages or difficulties of each. That is 
the purpose of this report.  
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Communication strategy, including design of tools for more effective 
communication of uncertainty 

Introduction 
Communication is the key link between the generation of information by MACSUR about 
the uncertainty of climate change impacts on future food security and how information is 
used by decision makers. In reporting uncertainty it is important to consider the intended 
audience and their understanding of uncertainty issues. The means of reporting and 
communication will likely be different for the science and stakeholder communities. 
Therefore there is a need to develop multiple approaches so that an appropriate one may 
be chosen to suite the requirements of each type of audience. This is a critical aspect of 
MACSUR, as a further source of uncertainty can be introduced by the use of inappropriate 
reporting and communication methods that lead to information misunderstanding. The way 
uncertainty is communicated can have a substantial impact on understanding gained and 
interpretation of information and subsequent decision making (Budescu, Broomell & Por, 
2010, Morton et al 2011), particularly with regard to climate change adaptation planning 
(i.e. Matthews et al 2008, McCrum 2009).  

Graphical display of uncertainty information 

Box Plots 
These are convenient ways of conveying key information in a relative simple and easy to 
understand method. Visualisation of summary statistics, such as error bars, conveys 
accuracy by the amount of +/- error, or with standard deviation or standard error. The box 
plot is a standard technique for presenting a summary of the distribution of a dataset. 
Thus, it can also be used to represent the key information contained in probability 
distribution functions (see next section). Boxplots provide minimum and maximum range 
values, defined upper and lower quartile range, median value and outliers. Importantly 
such data summaries enable the comparison of multiple data sets. 
Figure 1 below illustrates the combination of multiple information within a single box plot: 
multiple locations; multiple stages of crop growth (dates); median; 75%- and 25%-tiles; 10th 
and 90th-tile error bars, for 24 model estimates of wheat anthesis and maturity dates 
(Asseng et al., 2013).   
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Figure 1 Simulated anthesis (red) and maturity (yellow) dates. Right-hand side of box = 
75%-tile, left-hand side of box = 25%-tile, vertical line in box = median, right error bar = 
90%-tile and left error bar = 10%-tile of simulations based on 24 models. NL = Netherlands, 
AR = Argentina, IN = India, AU = Australia. (Asseng et al 2013) 
Boxplot modifications enable potentially more information to be conveyed, such as: 
density indications using the shape of the box sides to encode (i.e. histplot, vaseplot, box-
percentile and violin plot); data characteristics such as sample size and confidence levels; 
or additional statistics such as skewness and modality. 

Probability Density Function (PDF) and Cumulative Distribution Function (CDF) 
A Probability Density Function represents the relative likelihood with which values of a 
variable may be obtained. The values that variable may obtain are on the X-axis and the 
relative probability on the Y axis.  It is non- negative for all real x. Unlike error bars, which 
only give a range in which the solution should fall, PDF’s attach a likelihood to each 
possible value. The probability density function can be integrated to obtain the probability 
that the random variable takes a value in a given interval. A Cumulative Density Function 
(CDF) shows the same information but with on the Y-axis the cumulative probability that 
the true value (or sampled value) of the variable is smaller or equal to x. 
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A CDF alone may not be an effective means of representation, but its value is greatly 
increased when used in conjunction with a PDF. 
 

A 

 

B 

 
C 

 

D 

 
 
Figure 2. Sample PDFs and CDFs. A. Mean = 68, σ = 3: B. Mean = 68, σ = 3, C. Low standard 
deviation (σ = 2, mean = 68): D. Same mean as C, but σ = 4 
It is possible to sub-sample using pre-defined categories to create strata within the data 
used to create a PDF to create Kernel density plots to illustrate an estimated value 
response per category, for example (Fig 3) combinations of temperature and rainfall: 
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Figure 3. Probability density plots of simulated spring barley yields, illustrating the option 
to include all data and separations into climate data categories (n = 3000 for all runs, 1000 
for each category). (Elston et al, in prep) 
 
An alternative is to use just a CDF, but augmented with additional information, such as 
mean or median values, as shown in Fig. 4. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 4. CDF of day of year maximum soil moisture deficit is reached, estimated from 
observed (black) and climate model projection (red) data. Steps represent actual data 
values, smoothed lines are the distribution (assumed normal) estimated from mean and σ. 
Values at the top and vertical lines are mean day of year values (n =30) (Rivington et al 
2012). 
 
 
An alternative form of PDF is a Probability Plot (also known as Rankit, QQ, Quantile and PP 
plots) achieved by using a transformed Y-axis scale so that the plotted points are greater 
than, less than or equal to a fitted straight line distribution. This also enables confidence 
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intervals to be displayed (Fig 5 below shows 95% CI). Additional information such as mean, 
σ, and associated statistical significance (P) values can also be displayed. An advantage of 
this form of plot over a CDF plot is that we are able to judge the distribution fit by viewing 
how the points fall about the fitted line and within or outside the confidence intervals. 
 
 

 
Figure 5. Probability plot with transformed Y axis producing plots of estimated spring 
barley yield with fitted straight line distribution (middle dashed line) and 95% confidence 
intervals (outer dashed lines) and associated statistics. Here AD is the Anderson-Darling 
statistic and the P-value. Yield estimates from a crop model using observed weather (Obs) 
and hindcast Regional Climate Model data (OH) for Aberdeen, Scotland. 

Impact Response Surfaces (IRS) 
Impacts Response Surfaces visualize two dimensional explanatory variables and a response 
variable. They can be used to depict the sensitivity of impacts to climate change by 
showing the range of model behaviour over a range of climate conditions. Further 
development and operationalization of method for overlaying probabilistic climate 
projections with Impact Response Surfaces). Their form facilitates the use of estimates for 
a chosen response variable from multiple models (i.e. 600 in Fronzek et al 2011) run as a 
sensitivity analysis over a range of explanatory variables. For example in Fronzek at al 
(2011) the authors used a range of -3°C and 6.8°C changes in temperature (at 0.2°C 
increments), with precipitation changes between -30% to 50% (at 5% increments) to 
develop a response surface then used estimates from a climate model to model the risk of 
palsa mire loss plotted on the IRS. The approach also facilitates the overlaying of other 
response variables estimated within the same sensitivity analysis range. When climate 
projections are used, this enables changes over time to be illustrated. Within MACSUR this 
raises the potential for using the same method of reporting for multiple types of estimates 
(yield, soil and trade responses) using the same sensitivity analysis ranges, increments and 
time slices. 
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Figure 6.  Schematic impact response surfaces (IRSs) of a hypothetical impact model 
illustrating key features and some potential uses. IRSs depict impact behaviour across a 
wide range of climate changes relative to a reference climate, so that: critical impact 
thresholds can be plotted and possible impact discontinuities identified (A); impact model 
uncertainties can be displayed (B); changes in impact behaviour following adaptation can 
be plotted to evaluate advantages gained by adaptation (C); and different climate change 
projections can be overlaid to allow a rapid assessment of impacts or of impact risks where 
probabilistic projections are applied (D). The IRSs shown could be for average crop yields 
(in t/ha) and a possible adaptation option (C) could be the switch to a different crop 
variety. The colour shading of the probabilistic projection in D illustrates the probability 
distribution with red indicating higher probability than yellow. (Fronzek 2013) 
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Figure 7. Changes from 1961-1990 to 2080–2099 in annual mean temperature (°C) and 
precipitation (%) over northern Lapland based on an ensemble of climate projections. 
Probabilities are depicted as the percentage of projections enclosed within coloured 
zones. (Fronzek et al 2011). 
Where model ensembles are used, this approach also enables individual model’s plotted 
estimated values to be identified with an IRS, to help identify where it may exist within a 
distribution pattern of other models. 
Similarly Asseng et al (2013) plotted wheat yield change estimates from 26 crop models 
against temperature and CO2 concentration changes, but also overlaid with information of 
standard deviation of yield change. 
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Figure 8.  Response surfaces of crop model ensemble to temperature and atmospheric CO2 
concentration sensitivity tests at a) the Netherlands, b) Argentina, c) India, d) Australia. 
The filled colours represent the median (across the 26 models used) 30-year mean yield 
change (as a percentage of the mean 30-year yield for a 1981-2010 baseline period) for 
each sensitivity experiment (dots) as well as an emulated surface fitted to these dots. The 
grey colours represent the standard deviation (across the 26 models used) of the 30-year 
mean yield change (percentage of the 30-year mean baseline yield), with the outlines of 
the dots representing the experiments and the contours representing an emulated surface 
fit to these experimental standard deviations.  (Asseng et al., 2013). 
A caveat with IRS is that the approach may introduce additional error in that it requires 
assumptions to be made about the explanatory variables. For example in Fronzek et al 
(2011), this included an assumption about the seasonal cycle of temperature changes, 
affecting the tails of the distribution giving an under-estimate of risk up to about 5%.  

Plume plots 
This type of plot can display the temporal evolution of uncertainty, for example in 
probabilistic climate change projection data (i.e. UKCP09 2013). However, they do not 
provide details of continuous changes through time. In other words, this means the 
information presented shows multiple time-averaged projections, and does not represent 
transient (or continuous) model output through time. These plots help identify when a 
particular threshold may be exceeded, or the range in an estimate (i.e. temperature 
increase) in a given time period. 
 

 
Figure 9. In this Plume Plot the likely temperature range for the thirty year period 
between 2020 to 2049 (2030s) is shown to be between 0.6 and 3°C (blue dashed lines) and 
1.3 and 4.5°C in the period 2040 to 2069 (2050s). (UKCP09 2013). 
Additional methods include depiction of uncertainty bands (see Figure 2 above), line plots 
of multi-model ensembles, contour mapping, and fan charts.  

Probability of Exceedance 
 
Probability of exceedance (PE) plots provide a simple to calculate and easily plotted 
means of describing the probability of exceeding, or falling below, a value of interest 
(e.g. average crop yield, or single large rainfall event etc.) and the range in probabilities 
of the variable of interest. They have often been used in estimating maximum rainfall 
event occurrence and associated flood events, but have potential use in describing the 
shape of a probability range for many crop model simulation results. 
 

An easy to use formula for the PE is Weibull's: Pe (%) = m/(n+1) x 100. This formula 
requires the values to be sorted from largest to smallest, where m is the rank of the 
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sorted values (m=1 for the highest, m=n for the lowest), n is the number of values 
(Weibull 1961). This enables plotting against a scale of 0 (low probability) to 1 (high 
probability), i.e. Fig 10 below: 
 

 
Figure 10. Probability of exceedance of maize grain yield estimated using the CropSyst 
model under different emissions scenarios and time slices at Bamenda, Cameroon 
compared against baseline estimated yield from modelled historical weather data. 
(Munang et al 2008) 
 
A disadvantage of the PE is that the plotted data are not time or space sequenced, 
meaning individual values of interest have to be identified in the data set and attributed 
to a particular sequence in a simulation, time or place. 

Language based Reporting and Communication methods 
In parallel with graphical methods for reporting and communication, MACSUR could 
develop an agreed approach to using standardized terms for language based descriptions of 
uncertainty. This would be important to avoid ambiguity in interpretation and aid 
understanding by non-scientists. The IPCC uses a set of evidence and agreement 
statements that help provide a general text based framework to express the level of 
uncertainty (Mastrandrea et al 2010). Confidence and uncertainty reporting in the IPCC 
AR5 is based on the author teams’ evaluations of underlying scientific understanding. This 
is expressed as a qualitative level of confidence (from very low to very high) and, when 
possible, probabilistically with a quantified likelihood (from exceptionally unlikely to 
virtually certain). Confidence in the validity of a finding is based on the type, amount, 
quality, and consistency of evidence (e.g., data, mechanistic understanding, theory, 
models, expert judgment) and the degree of agreement (i.e. low, medium and high). 
Probabilistic estimates of quantified measures of uncertainty in a finding are based on 
statistical analysis of observations or model results, or both, and expert judgment. Terms 
used to express expert judgment indicate the assessed likelihood of an outcome or a 
result: virtually certain 99–100% probability, very likely 90–100%, likely 66–100%, about as 
likely as not 33–66%, unlikely 0–33%, very unlikely 0–10%, exceptionally unlikely 0–1%. 
Additional terms (extremely likely: 95–100%, more likely than not >50–100%, and 
extremely unlikely 0–5%) can also be used (IPCC 2013). 
For this approach to be utilized in MACSUR would require the development of protocols to 
translate ensemble simulation results into language categories of confidence and 
certainty, using combined statistical evidence of the quantified likelihood and a process of 
consensus building to establish an agreed expert evaluation. Guidance for best practices in 
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uncertainty communication are available, i.e. Kloprogge, van der Sluijs and Wardekker 
(2007) but the nature of MACSUR is likely to necessitate the development of specific 
approaches to suit the range of uncertainty information to be communicated. 
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