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Abstract 
As models become increasingly complex and integrated, uncertainty among model 
parameters, variables and processes become critical for evaluating model outcomes and 
predictions. A framework for understanding uncertainty in climate modelling has been 
developed by the IPCC and EEA which provides a framework for discussion of uncertainty 
in models in general. Here we report on a review of this framework along with the results 
of a survey of sources of uncertainty in livestock and grassland models. Along with the 
identification of key sources of uncertainty in livestock and grassland modelling, the 
survey highlighted the need for a development of a common typology for uncertainty. 
When collaborating across traditionally separate research fields, or when communicating 
with stakeholders, differences in understanding, interpretation or emphasis can cause 
confusion. Further work in MACSUR should focus on improving model intercomparison 
methods to better understand model uncertainties, and improve availability of high 
quality datasets which can reduce model uncertainties. 
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Introduction 
During the process of deriving projections for probable future developments of our climate 
system, not only did the underlying assumptions for the scenarios undergo conceptual as 
well as qualitative advancements. Also, the use and perception of the respective 
uncertainties have changed over the years. Here, the development of different metrics and 
the disentanglement of different sources for uncertainties helped to draw knowledge from 
this formerly disregarded and discredited information. 
 
For climate projections, three main sources of uncertainties have been identified (SREX 
Report, IPCC 2012): the natural variability of climate, uncertainties in climate model 
parameters and structure, and projections of future emissions. The distinction between these 
sources have enabled the identification of the source of shortcomings and to improve the 
reliability of projections. Uncertainty was considered in two dimensions (IPCC, 2007): in 
relation to the evidence supporting the findings and in relation to the agreement between 
model results. The higher the chosen metric value is for both of these dimensions, the higher 
is the confidence level which can be assigned and consequently the lower the uncertainty. 
 
Adopting this approach for the evaluation of uncertainties of climate change effects for 
grassland and livestock modelling, on the one hand allows consolidation of the knowledge 
on the reliability of current projections and on the other hand identifies current knowledge 
gaps which are responsible for the major uncertainties. Thus, not only is the assessment of 
uncertainties of climate change projections (as already achieved by the IPCC) of importance 
here, but the propagation of uncertainty from the definition of emission pathways through 
climate models to the outcome of livestock models. As for the whole impact community, this 
field is still wide open. 
 
LiveM model uncertainties 

 
Uncertainty in modelling agricultural responses to climate change arise from a range of 
interlinked sources. At the heart of all climate change modelling are the many climate 
change models which each has their own associated uncertainties (Gosling, 2013). These 
climate change models feed into various impacts models, which again have their own 
associated uncertainties (Gosling, 2013). Together with the uncertainties associated with 
emissions estimates and socio-economic assumptions (Gosling, 2013), it is clear that any 
predictions on responses to climate change are subject to a very high degree of uncertainty.  
 
Previous meta-analysis of grassland models with respect to their ability to contribute to 
climate change and food security studies (Rivington and Koo, 2011) found that for the 
improvement of the main processes, most of the modellers specified targeted 
experimentation to give more specific calibration data as the most important issue. Another 
necessity for improvement was given as greater flexibility in the models to account for 
growth responses to management i.e. grazing or cutting. Although more specific information 
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on strategies for refinements were gathered, it was not differentiated by the source of 
deficiencies and uncertainties. 
 
In order to take into account modellers’ expertise for the assessment of model uncertainties, 
a questionnaire was designed for the identification of critical sources of uncertainty in 
commonly used models for grassland (G) or livestock (L) modelling systems. For each 
critical source of uncertainty, modellers were asked to rank the level of uncertainty on a 
scale from 1 to 5 (1 for very low, 2 for low, 3 for medium, 4 for high and 5 for very high). 
Responses were received for 7 models (5 grassland and 2 livestock, details see table 1). All 
responses are summarized in the appendix (tables 2-5). 
 
It is clear from the responses received, that all grassland models have some critical 
variables in common. Precipitation is highlighted as a critical physical variable in all models, 
though to varying degrees. Grassland management is naturally important for all grassland 
models, with the full range of possible options having an impact to some extent. The removal 
of biomass from the pasture, either by cutting or grazing animals, highly determines the 
reliability of the results as well as fertilization (when included in the model).  
 
There were also clear differences between models, with many critical variables and 
processes only listed for one or two models, reflecting the great diversity in modelling 
systems. The PASIM and LPJmL models are both critically influenced by temperature, 
radiation and soil processes. The two Wadiscape models, on the other hand, include shrub 
and tree growth in the model and hence fire management and tree removal have a critical 
impact on the model outcomes. 
 
When regarding the most prominent processes and their susceptibility to parameter 
uncertainty, the range of possibilities widen. Photosynthesis and growth processes are 
mentioned for nearly all grassland models. The parameterisation of water fluxes in the plants 
and the soil are regarded by some as major uncertainty source whereas the role of 
management such as grazing is classified from low to high importance. 
 
The livestock models reported have some clear parallels to the grassland models, 
particularly in the critical physical variables. Livestock models are also greatly influenced by 
climatic variables such as precipitation and temperature, both directly in animal responses 
and indirectly in forage crop inputs. Remaining critical livestock variables relate to the quality 
and quantity of inputs (crop yield, crop type, feed intensity) and the quality and quantity of 
outputs (GHG emissions, milk yields). For the HolosFor livestock model, processes 
determining soil carbon development and greenhouse gas emissions are in the focus for 
model uncertainties. 
 
When asking for validation related topics, most questionnaires have a rather sparse 
outcome. Also here, only some modellers gave uncertainty estimates on the data sources 
used. Only two grass models use flux measurements between biosphere and atmosphere as 
a specific data group. The other categories which are given are very non-specific and 
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comprise either data (such as field experiments and remote sensing) or qualitative sources 
such as expert knowledge. 
 
The final question aimed at the assessment of the modellers conception of the uncertainty of 
their input data. It was mostly answered by suggestions for how to circumvent input 
shortcomings. These go mostly in the direction of scenario analysis such as systematic 
variation of grazing intensities, stochastic rainfall, or synthetic terrain slopes. Others state 
that they have to rely on the data given by authorities. 

Typology of uncertainties 
 
Answers to the final question on the questionnaire raises an important point about the nature 
of uncertainty. There are two very different aspects of uncertainty discussed in the answers 
provided. Firstly, there is the uncertainty relating to the quality of the input data modellers 
use. As many modellers state, they are reliant on data provided by the authorities which may 
or may not be of the standard of accuracy or coverage desired for conclusive model outputs. 
Secondly, there are uncertainties associated with using different model parameters or model 
assumptions. The same model, run with equally plausible assumptions, will produce very 
different outcomes. This second aspect, uncertainty arising from the application of different 
versions of the same model, has not been well quantified in the impacts modelling literature 
(Gosling, 2013).  
 
One reason why the same question generated such diverse answers is that we do not yet 
have a clear typology of uncertainties. Different communities may interpret questions of 
uncertainty in very different ways. Also, different types of uncertainty may be more or less 
important depending on the community (Overbeek and Bessembinder, 2013). Creating a 
common typology of uncertainty will become increasingly important as we attempt to work 
across traditional boundaries, through merging models, by communicating results to a wide 
range of end users and by combining impacts from diverse sectors into more comprehensive 
assessments. Some effort has been made to produce a common typology within a particular 
field (cropM are attempting to do so for the crop modelling community), and this exercise 
should be expanded. The ongoing activities on model intercomparison in the AgMIP 
community (on certain crops such as wheat, maize or rice as well as on economic modelling 
approaches) aim to improve knowledge on uncertainty by using different modelling 
approaches. The extension of this approach to the modelling intercomparison of livestock 
and grassland models is included in MACSUR WP2 and WP3 and incorporated into AgMIP. 
This combination allows for a broad contribution from the modelling community and ensures 
the development of common metrics inside the community. 
 
Using common metrics within the modelling community, will also facilitate better 
communication of uncertainties to the relevant stakeholders. Policy makers are acutely 
aware of the difficulties in developing policies in the face of uncertainty (EEA, 2012). In some 
cases, stakeholders are looking for definitive answers before making a decision or looking 
for clear cut messages to deliver. Policy drivers, such as the IPCC and the EEA, have over 
the past 10 years put in a lot of effort in developing methods for describing uncertainties in 
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climate predictions (Fussel, 2013; EEA, 2012). It is now necessary to ensure that the 
typology  of uncertainty used by the scientific modelling community accurately informs this 
policy typology of uncertainty. 

Implications for modelling responses to climate change 
 
In order to establish a procedure for evaluating uncertainties of grassland and livestock 
modelling responses to climate change, we firstly summarize the knowledge on uncertainties 
in climate modelling. Subsequently, we concentrate on the most relevant input variables for 
the grassland and livestock models and estimate their uncertainties. 
 
From observations, the following conclusions were drawn (IPCC, 2007): 

● It is a robust finding that global mean temperature is rising. 
● There is a high uncertainty about the development of extreme events (droughts, 

storms, extreme temperatures, frequency and intensity of precipitation) due to 
insufficient data coverage. 

● Feedbacks in the climate system with land-use and livestock related GHG emissions 
introduce high uncertainties. 

● The attribution of the causes of observed temperature changes to natural or human 
causes remains uncertain at smaller than continental scales. 

● The magnitude of CO2 emissions from land-use change and CH4 emissions from 
individual sources remain as key uncertainties. 

 
Climate projections for the 21st century were evaluated and key statements were extracted 
(IPCC, 2007): 

● It is a robust finding that global GHG emissions will continue to grow and global 
mean temperature will continue to rise. 

● The increase of impacts is very likely due to increased frequencies and intensities of 
some extreme weather events (heat waves, tropical cyclones, floods and drought). 

● A major source of uncertainties remain to be the feedbacks in the climate system 
which create uncertainty in the emissions trajectory required to achieve a particular 
stabilisation level. The strength of feedbacks differ considerably between models 
(e.g. cloud feedbacks, oceanic heat uptake and carbon cycle feedbacks). 

● Impacts research is hampered by uncertainties surrounding regional projections of 
climate change, particularly precipitation. The confidence in projections is higher for 
some variables (e.g. temperature) than for others (e.g. precipitation), and it is higher 
for larger spatial scales and longer time averaging periods.  

 
With respect to climate extremes, the corresponding uncertainties are summarized by IPCC 
(2012): 

● High uncertainty in sign of change for coming two to three decades due to high 
natural climate variability and relatively small effect of climate change. 

● High uncertainty in (e.g. precipitation-related) extremes by the end of the 21st 
century due to uncertainties in climate models rather than in future emissions. 
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● Uncertainty for other extremes (in particular temperature) mainly due to the 
emissions uncertainties. 

● Inclusion of the assessment of the past performance of models in simulating 
extremes increases the assessed uncertainty.  

● Low-probability, high-impact changes associated with the crossing of poorly 
understood climate thresholds cannot be excluded, given the transient and complex 
nature of the climate system.  

● Feedbacks play an important role in either damping or enhancing extremes in several 
climate variables. 

 
These summaries highlight the advanced evaluation of uncertainties in climate change 
modelling for the 21st century. This process is much less complete for other major input data 
and scenarios used in livestock and pasture modelling. The survey of land-use activities in 
space and time is rare on the European continent let alone on the global scale. Datasets on 
the distribution of pasture vary greatly (Köchy, 2013) and therefore are considered to be of 
low reliability because most other types of activity (such as cropland, forest or unsuitable 
land) are more easily identified. Estimates of the global pasture area differ considerably (3.3 
billion ha by Klein Goldewijk et al. (2011), 4.7 billion ha by Erb et al. (2007) and 3.4 billion ha 
(permanent pasture in FAO, faostat)) highlighting the need for an improved and repeated 
detection of pasture areas. So far, a global dataset on pasture management (grazing, 
cutting, fertilizing, irrigation, etc.) is not existent, highlighting the need for improved data-sets 
for reducing or understanding modelling uncertainty. 
 
Concerning the link between grassland and livestock modelling, descriptions for specific 
sites of feed baskets, energy content of grass and other feed, feeding efficiencies, 
conversion of feed biomass into meat and milk yields as well as emissions, energy 
requirements of animals for maintenance, lactation and growth are available. Attempts to 
derive generalized compilations of these data have been made (e.g. Wirsenius, 2000) but a 
thorough evaluation of uncertainties of these data, rates and information remains premature. 
Efforts to address this gap are underway within several large international collaborative 
projects (e.g. AnimalChange), with reports expected to be available within the next two 
years. With such information available, thorough evaluations of model uncertainties should 
be possible also within livestock and grassland modelling. 

Recommendations for future 
 
Firstly, in order to address the question of how to assess and reduce uncertainties in 
livestock and pasture modelling, it has to be distinguished between several areas: 

● uncertainty in model approaches (approach taken by AgMIP Grass), 
● uncertainty in climate projections (approach taken by CMIP and IPCC) and 
● uncertainty in input data (approach taken by AnimalChange). 

 
Thus, the most promising area of activity for the reduction of uncertainties in livestock 
modelling will be to learn from the experiences in AgMIP on model intercomparison (as is 
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happening in WP2 and WP3) and to expand on the compilation and analysis of major input 
data that is happening in AnimalChange. 
 
The second major issue concerns the handling of researchers and stakeholders of 
uncertainty. Within the scientific community, both model parameters and model results could 
be complemented by estimates of their uncertainties. These could be standard deviations, 
certain percentiles or even probability density functions which can be derived by 
deterministics models after evaluation by Bayesian parameter estimation, Monte Carlo 
simulations or other sensitivity analysis methods. These uncertainties should then be used 
as an additional input by subsequent models. When sharing model results with stakeholders, 
the communication of uncertainties is received rather rather differently depending on the 
audience and seems to be different depending on the topic. While in the climate-related 
community, stakeholders from authorities of various levels (community to EU) are familiar 
with using the information contained in uncertainty estimates, other groups are more 
reluctant or unfamiliar with the terminology or interpretation of uncertainty. Here, further 
efforts are worthwhile to introduce and promote the concept of uncertainty. Efforts in this 
field should be incorporated into the on-going stakeholder activities taking place within 
MACSUR. 
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Appendix 

 
Table 1: Details of models contributing to questionnaire 

Name PaSim  

Description Pasture Simulation Model 

Developer INRA 

Inputs weather, soil, grassland management 

Output Productivity, fluxes (C, N, water) 

Published https://www1.clermont.inra.fr/urep/modeles/pasim.htm 

  

Name LPJmL 

Description Global model for natural vegetation and crop development 

Developer PIK 

Inputs weather, soil, grassland management 

Output Productivity, fluxes (C, water) 
Published Sitch et al. 2003, Bondeau et al. 2007 

  

Name AnnuGrow 

Description Permanent grassland with annual species (semiarid regions) 

Developer Martin Köchy 

Inputs Rainfall, Soil texture etc. 

Output production of ag biomass, Water fluxes (infiltration, transpiration, percolation) 

Published http://code.google.com/p/annugrow/ 

  

Name Wadiscape 3.x 

Description Permanent grassland with annual species (semiarid regions) and low shrubs 

Developer Martin Köchy 

Inputs Rainfall, Topography (slope) 

Output generation of a neutral (fractal) wadi landscape with specified slope angles, calculation 
of accumulated flow 

Published http://sci.martinkoechy.de/AdditionalMaterial/WadiscapeGeneratorDoku/main.html 

  

Name Wadiscape 6.x 

Description as above, but including native trees 
Developer Martin Köchy 

Inputs Rainfall, Topography (slope), Fire frequency 

Output wadi landscape, calculation of accumulated flow 

Published http://sci.martinkoechy.de/AdditionalMaterial/WadiscapeGeneratorDoku/main.html 

  

Name HolosNor 
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Description Crop, dairy & beef, and pig production. Estimates GHG emissions including soil C 
change 

Developer Helge Bonesmo et al. 

Inputs consistent data set of soil, weather, and farm operational data for 30 Norwegian dairy 
farms (2008) 

Output GHG emissions including soil C change 

Published Bonesmo et al. 2012, 2013, 2013 

  

Name EcoDreams_Spain 

Description Bayesian regression-like models of milk performance on organic farms as a function of 
management and climate 

Developer Isabel Blanco Penedo, IRTA 

Inputs Temperature, Precipitation, Wind 

Output Milk performance 

Published Blanco Penedo et al. 2012 
 
 
Table 2: Summary of answers to Question 1: Please note the most important physical 
variables for your model (up to 3) and estimate the sensitivity of your model to their 
uncertainties. 
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Precipitation 5 5 2 2 2 4 4

Air temperature 5     4 4

Solar radiation 5 4      

Soil texture etc.  4 4   4  

Topography (slope)    2 2   

Fire frequency     3   

Wind related       4

Milk yield      4  

Crops and forage DM yields      4  
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Table 3: Summary of answers to Question 2: Please note the most important management 
options (up to 3) for your model and estimate the sensitivity of your model to their 
uncertainties. 
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Cutting 5 4      

Fertilization 5     5  

Grazing 5 4  4 4   

Fire management     2   

Tree removal     2   

Feed intensity      4  

Type of crop      4  

Housing type       2

Milk consistency       2

Genetics       2

 
Table 4: Summary of answers Question 3: Please note the most important processes (up to 
3) for your model and estimate the sensitivity of your model to parameter uncertainties 
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Plant photosynthesis 5 5  3 3   

Evapotranspiration   3     

Water infiltration   4     

Soil respiration 5 4      

Soil water balance 5       
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Soil C change      5  

Competition of plants   3     

Tree growth     3   

Grazing  4  2 to 4 2 to 4   

N2O production       5  

Methane production      4  

 
 
Table 5: Summary of answers Question 4: Please note the most important data sources or 
types for your model validation (up to 3) and estimate uncertainties of these. 
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Flux data x 2      

Field experiments  2 2     

Remote sensing  3 4     

Expert knowledge    x x   

Farm inspection       2

Monitoring data       1

 
 
Question 5: How do you estimate the uncertainties of your main drivers themselves? 
 
 


