FACCE-MACSUR

D-L1.2.2: Modelling responses of forages to climate change with a focus on nutritive value

Perttu Virkajärvi1, Panu Korhonen1, Gianni Bellocci2, Yannick Curnel3, Lianhai Wu4, Guillaume Jégo5, Tomas Persson6, Mats Höglind7, Marcel Van Oijen8, Anne-Maj Gustavsson8, Richard P. Kipling9, Alan Rotz10, Taru Palosuo1, Pierluigi Calanca11 and Jantine Van Middelkoop12

1Green Technology, Natural Resources Institute Finland (Luke), Halolantie 31A, FI-71750 Maaninka, Finland;
2Grassland Ecosystem Research Unit, French National Institute for Agricultural Research (INRA), 5 Chemin de Beaulieu, 63039 Clermont-Ferrand, France;
3Farming Systems, territories and information technologies unit, Walloon Agricultural Research Center (CRA-W), Rue de Liroux, 9, 5030 Gembloux, Belgium;
4Rothamsted Research, North Wyke, Okehampton EX20 2SB, UK;
5Québec Research and Development Centre, Agriculture and Agri-Food Canada, 2560 Hochelaga Boulevard, Quebec (QC), G1V 2J3, Canada;
6Norwegian Institute of Bioeconomy Research (NIBIO), Po. Box 115, NO-1431 Ås, Norway;
7Centre for Ecology and Hydrology (CEH), Bush Estate, Penicuik, EH26 0QB, UK;
8Swedish University of Agricultural Sciences, (SLU), Department of Agricultural Research for Northern Sweden, SE-901 83 Umeå, Sweden;
9Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, 1st Floor, Stapledon Building, PlasGogerddan Aberystwyth, Ceredigion, SY23 3EE, UK
10U.S. Department of Agriculture, Agricultural Research Service, University Park, Pennsylvania, USA
11Department of Natural Resources and Agriculture, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland
12Wageningen UR Livestock Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands

*perttu.virkajarvi@luke.fi

Instrument: Joint Programming Initiative
Topic: Agriculture, Food Security, and Climate Change
Project: Modelling European Agriculture with Climate Change for Food Security (FACCE-MACSUR)

Due date of deliverable: month 20
Start date of project: 1 May 2015
Duration: 24 months
Theme, Work Package: LiveM 1
Deliverable lead partner: 92
Deliverable reference num.: D-L1.2.2 v1
Deliverable type: Report
Confidential till: (the full abstract is published in Advances in animal Biosciences 2016)

<table>
<thead>
<tr>
<th>Revision</th>
<th>Changes</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>First Release</td>
<td></td>
</tr>
<tr>
<td>1.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abstract/Executive summary

Introduction
Process-based models (PBMs) are important tools for predicting and understanding the impacts of climate change on grassland systems. The models should be able to simulate changes in sward nutritional value (NV) over time in order to better understand the interactions between grasslands and ruminant nutrition. Changes in the NV of forage may not only alter animal performance but also the need for other feeds, the management and productivity of the system, the quality of final products and the environmental impacts of production. Climate change is expected to affect the NV of grasslands by affecting plant physiological processes, and via effects on species composition. An increase in temperature may cause an increase in NDF and lignin content of forages, thus reducing digestibility by domestic herbivores. On the other hand, under high CO2, analyses on both temporary and permanent grasslands indicate a strong increase in soluble sugar content, which increases the energetic value and the aptitude for ensiling of grass. Conversely, a decrease of the CP content in grass dry matter up to 30% is observed. The reduction in the forage protein and energy content lowers the rumen microbial synthesis and availability of microbial proteins for ruminant growth and production, and may also lead to increased production of methane (a greenhouse gas) by methanogens in the rumen. Ruminants kept in extensive systems that are based on low protein forages may be sensitive to these negative effects. On the contrary, an increase in soluble sugar and decrease in CP content would rather be positive for ruminants in intensive high protein forage systems. Modelling grassland NV is often based on variables describing the energy and protein content of forage. However, a wide range of variables are used to define forage NV in experimental data, presenting challenges for modellers. Further complication arises from the dissimilar feeding regimes used across the different production systems in countries and regions. The aim of this work was to review the extent to which current grassland PBMs are capable of characterising the NV of forage species in grassland swards in relation to projected climate change. This includes the identification of the modelling approaches used, the key characteristics of the forages represented and the production systems these models have been developed for.
Results and Discussion

This review was the first step towards gathering and clarifying information about the possibilities of modelling NV. Different methods for simulating the NV of forages were reviewed from literature and a questionnaire survey was sent to MACSUR (Modeling European Agriculture with Climate Change for Food Security) knowledge hub partners in order to obtain information about how NV value was characterised in different models. Here, we briefly review nine PBMs for which information was found. In general, most grassland PBMs simulate the nitrogen concentration in the plant material which can be used to evaluate forage CP content, development of cell wall, and its digestibility, but energy value is simulated in only a few models. PBMs tend to be fairly comprehensive in their consideration of weather variables that are expected to change, but there are still some parts that could be improved. For instance, the effect of (CO2) on photosynthesis (or radiation † use efficiency) is usually taken into account, but the effect on water use efficiency is not always simulated. In addition, the effect of extreme weather conditions such as frost and heat waves, or air pollutants, are often lacking. At first, the PBMs may seem to have only few variables in describing forage NV, but these particular variables are the most essential ones to consider (OM digestibility, NDF content and digestibility, and CP content), and which are very useful for planning feeding strategy by producers and agricultural consultants. The current uncertainties in relation to PBMs modelling forage NV are related to (1) the simulation of the physiological adaptation of plants to changes in environmental conditions (e.g. plant acclimatory effects, Zaka et al., 2016); (2) the simulation of the formation and senescence of tillers, (3) the simulation of the dynamics of leaf chemical composition including water soluble carbohydrates, (4) the simulation of the response of carbon and nitrogen-allocation to environmental change, (5) the quantification of the relative importance of grazing regime and harvest dates. For parameterisation, these uncertainties relate to (6) the use of information from field and laboratory trials with different genotypes to parameterise for alternative cultivars (e.g. to represent developmental stages of plants) and (7) the need to improve the link between plant and soil models with respect to the effects of soil water and soil nitrogen. There is a strong need for data including frequent time series of forage NV from experiments in which climate change is mimicked.
Acknowledgements

This paper was produced through the international research project FACCE MACSUR - Modelling European Agriculture with Climate Change for Food Security - a FACCE JPI knowledge hub; the work was supported at national level by MMM (Finland), INRA (France), CRA-W (Belgium), BBSRC (UK), AAFC (Canada), The Research Council of Norway (Norway), Swedish Research Council for Environment and SLU (Sweden).

References:

Agrométéorologie, Programme de recherche ‘Observation de la terre par satellite‘.
Gembloux, 85pp. (in French).

Full paper available at:
doi:10.1017/S2040470016000212

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Joint Programming Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
<td>Agriculture, Food Security, and Climate Change</td>
</tr>
<tr>
<td>Project</td>
<td>Modelling European Agriculture with Climate Change for Food Security (FACCE-MACSUR)</td>
</tr>
<tr>
<td>Due date of deliverable:</td>
<td>month 20</td>
</tr>
<tr>
<td>Start date of project:</td>
<td>1 May 2015</td>
</tr>
<tr>
<td>Duration:</td>
<td>24 months</td>
</tr>
<tr>
<td>Theme, Work Package:</td>
<td>LiveM 1</td>
</tr>
<tr>
<td>Deliverable lead partner:</td>
<td>92</td>
</tr>
<tr>
<td>Deliverable reference num.:</td>
<td>D-L1.2.2 v1</td>
</tr>
<tr>
<td>Deliverable type:</td>
<td>Report</td>
</tr>
<tr>
<td>Confidential till:</td>
<td>(the full abstract is published in Advances in animal Biosciences 2016)</td>
</tr>
</tbody>
</table>

Revision | Changes | Date |
1.0 | First Release| |
1.01 | | |