Integrated impact modelling of climate change and adaptation policies on land use and water resources in Austria M. SCHÖNHART¹, M. ZESSNER², A.P. BLASCHKE³, J. PARAJKA³, G. HEPP², B. STRENN², H. TRAUTVETTER², E. SCHMID¹ ¹Institute for Sustainable Economic Development, University of Natural Resources and Life Sciences Vienna ²Institute for Water Quality, Resources and Waste Management, Vienna University of Technology ³Institute of Hydraulic Engineering and Water Resources Management, Vienna University of Technology MACSUR Conference, 22-24 May, Berlin ### Research questions - How do climate and socio-economic changes affect Austrian land use, nutrient emissions as well as the low flow and quality of water bodies? - Which agricultural adaptation measures can cost-effectively counteract adverse impacts? - What are effective **policies** to manage water quality under climate change? ### Integrated modelling framework Zessner et al., 2017, Sci Tot Envi 579, 1137-1151 ### Climate and policy scenarios #### Reference scenario #### Climate change scenarios (2040) #### REFerence Observed land use based on current market situation and policies; serves calibration purposes #### Similar (precipitation) Temperature: +1.5 C° Precipitation: observed #### Dry (low precipitation) Temperature: +1.5 C° Precipitation: decline #### Wet (high precipitation) Temperature: +1.5 C° Precipitation: increase #### Policy scenarios #### BAU Current and foreseeable policy changes and autonomous adaptation on climate scen. Similar #### IMPact wet/dry Same as BAU #### WAter Protection I Water protection policies to improve compliance to the WFD #### **WAter Protection II** Water protection policies to further improve compliance to the WFD ### Water protection policies | | Policy | BAU | IMP | WAP_I | WAP_II | |---|---|--|------|--|--| | Market regulation
and direct payments
(CAP 1. pillar) | Production quotas
(e.g. dairy quota) | Not available | | | | | | Coupled direct payments | Not available | | | | | | Single farm payment | Regional premiums | | | | | | Cross compliance: e.g. Nitrate | Max. 100kg N /application | | Max. 80kg N ² | Max. 80kg N ³ | | | directive ¹ | Max. N according to Annex 3 | | Like BAU | Like BAU | | | N Nitrogen at field level (ha) | Max. 170kg N with organic fertilizers | | Max. 150kg N | Max. 150kg N | | | | | | No maize, soy, sugar beets, | No maize, soybean, sugar beets, | | | | | | potatoes, and pumpkin on areas | potatoes, and pumpkin on areas | | | | | | > 8% slope close to surface | > 8% slope close to surface | | | | | | waters ^{3,5} | waters ^{4,5} | | | Greening | Maintenance of permanent grassland | | like BAU | Like BAU | | | | 5% ecological focus areas | | 5% set aside | Like WAP_I | | | | Crop rotation restrictions | | Like BAU + max. 50% maize | Like BAU + max. 33% maize | | | Less favoured area payments | Available | | Like BAU | Like BAU | | Rural development
(CAP 2. pillar) | Agri-environmental program
(ÖPUL) | Premium levels and standards according to ÖPUL for the following measures: Environmentally sound and biodiversity-promoting management Limitation of yield-increasing inputs Greening of arable land – intermediate crops Greening of arable land – "Evergreen" system Direct seeding and seeding on mulch Preventative surface water protection on arable land Management of arable areas particularly threatened by leaching | | Like BAU, additionally (regional): +25% premiums³ for greening of arable land, direct and mulch seeding, preventative surface water protection, limitation of yield-increasing inputs, and organic farming | Like BAU, additionally (national): +25% premiums ⁴ for greening of arable land, direct and mulch seeding, preventative surface water protection, limitation of yield-increasing inputs, and organic farming | | Waste water | | Organic farming Total phosphorus < 1 r | mg/I | Total phosphorus < 0,5mg/l ³ | Total phosphorus < 0,5mg/l ⁴ | | treatment | | N removal > 70% (curr | - | N removal > 85% ³ | N removal > 85% ⁴ | ## Seasonal differences in runoff from TUWmodel three climate change scenarios similar, dry, wet compared to the past climate. blue = water sheds with winter low flow regime red = water sheds with summer low flow regime line = median shading = 25%- and 75%- percentile. ### Examples for relative yield changes from EPIC Modelled multi-year average at HRU level for three fertilization intensities. Reference is past climate with medium fertilization. climate scenarios similar (green), wet (blue) and dry (red). ## Crop choices from climate change and policies Comparison of maize and set aside area with the BAU scenario for two climate and three policy scenarios for 35 Austrian NUTS-3 regions ## Fertilization choices from climate change and policies Comparison of three intensity levels in two climate and three policy scenarios with the BAU scenario for 35 Austrian NUTS-3 regions ## Change in agricultural producer surplus at NUTS-3 level from PASMA[grid] ## Impacts on the nitrogen cycle at national scale wet (left column) and dry (right column) Components of the agricultural N cycle are: organic and mineral fertilizer production, biological nitrogen fixation, atmospheric nitrogen deposition, nitrogen uptake by arable crops, permanent grasslands, and permanent crops. ## Modelled annual Total Phosphorus export loads per watershed ### Regional risk assessment for EQS exceedance ## Regional risk assessment for type specific PO₄-P- target values WAP_II_dry no exceedance of EQS potential exceedance of EQS exceedance of EQS severe exceedance of EQS not considered catchments Cost-effectiveness of WAP policies to reduce DIN (dissolved inorganic nitrogen) and TP (total phosphorus) loads (prelim.) Annual costs (€) for annual reductions compared to the respective *IMP* scenario at NUTS-3 level. Note: Lines indicate linear trends of the respective scenario. #### Discussion & conclusions - Cost-effectiveness: challenge of multiple environmental effects - Environmental effectiveness of selected measures rather low - Results confirm other studies with heterogeneous impacts between regions - Target agri-environmental programs towards changing productivity - Autonomous adaptation with declining fertilization intensity under DRY but increasing under WET - Adapt regulation of nutrient thresholds and fertilization schedules to maintain current levels of cost-effectiveness - Mutual impacts of surpluses, emissions and dilution: important for national water quality but less so for total nutrient loads - Policy objectives determine optimal policies: high cost-effectiveness for total nutrient loads may lead to local environmental deterioration - WAP I targeting effective for N loads -> WAP II more expensive per unit nutrient savings Contact details: <u>martin.schoenhart@boku.ac.at</u> **BOKU University, Vienna** The presented results are derived from the "Aqua-Stress" Project "Water resources under climatic stress. An integrated assessment of impacts on water availability and water quality under changing climate and land use" (KR13AC6K11034). The project was funded within the 6th Austrian Climate Research Program by the Climate and Energy Fund. The presentation has also been supported by the FACCE-JPI MACSUR project supported by BMLFUW