

Future climate change and impacts on yields and farm management: a case study at a pilot region in Finland

Tuomo Purola, Xing Liu, Heikki Lehtonen, Fulu Tao, Taru Palosuo Natural Resources Institute Finland (Luke)

Prepared for MACSUR Science Conference 2017, Berlin

Objectives - main research questions:

- What are the effects of crop productivity change on farm level land use, management and farm income?
- How much more value can a farmer expect from improved crop yields?
- How do the effects vary with different future price levels?
- Differences between spring and winter cereals in future climate conditions?
- Do higher crop yields lead to reduced GHG emissions per farm, or per kg produced?

Crop modelling results utilised in this study

• Ensemble simulations using a process-based large area crop model (MCWLA) (Tao et al., 2015)

It explicitly parameterized the effects of extreme temperature and drought stress on wheat yields, and accounted for a wide range of wheat cultivars with contrasting phenological characteristics and thermal requirements.

- Climate scenarios B1, A2
- Other main assumptions
 - Yields of all spring crops will develop in the very similar way, but winter wheat yields differently

Estimated future yields 2042-2070 of spring and winter wheat in North Savo in B1 (upper) and A2 (lower) climate scenarios

--- Yields 1995-2014 —— B1 GISS —— B1 CSIRO —— A2 BCCR A2 IPSL

Economic model employed

- Rational farmers, mean-variance utility function:
- Maximize present income discounted expected profit
- Minimize the variance of expected profits
- Choosing the sequence of crops *i* planted on parcels *p* every year during next *H* years
- A(p,t,i)=Land allocation on parcel p of crop i on year t
- Y=Crop yield, depends on past land use, N fert., soil pH, fungicide use; X=past (expected) gross margin covariance; C=cost per ha; P=crop price; S=support payments per crop

$$Max \sum_{t=1}^{H} \sum_{p=1}^{10} \sum_{i=1}^{M} (1/(1+r))^{t} (Y(A(p,t,i), p,t,i)A(p,t,i)P(i) + S(i) - C(p,t,i))$$
$$-\theta \sum_{t=1}^{H} \sum_{c} \sum_{c2} (1/(1+r))^{t} A' XA$$

$$\sum_{\forall c} A(p,t,c) = 1,$$

Special features of the economic model employed

Nitrogen response function (Lehtonen, 2001)

 $\begin{cases} Y_{mean}(N^{i}) = m(1 - ke^{bN^{i}}) & when \ i = wheat, barley, oats \\ Y_{mean}(N^{i}) = a_{0} + b_{0}N^{i} + c_{0}N^{2i} & when \ i = oilseeds \end{cases}$

Fungicide treatment (Purola, 2013)

$$F(p,t,c^{i}) = \delta(p,t,c^{i}) \sum_{j=1}^{\gamma} \beta_{j} K_{j}(c^{i})$$

Liming treatment (Myyrä et al. 2006)

 $Y(A(p,t,i)) = \begin{cases} Y_{MEAN}(p,i)Y_{RED}(p,t,i)((1+L(p,t)+F(p,t,i)-\rho D(i))) & \text{if } i = wheat \text{ or barley} \\ Y_{MEAN}(p,i)Y_{RED}(p,t,i)((1+L(p,t))) & \text{if } i = others \end{cases}$

Mésure

Cereals farms in North Savo region

- Farm size appr. 50 ha, average yields of the region, land and input use derived from statistical sources and verified calculations (Pro Agria (proagria.fi), Luke)
- 32% of farm family income from agriculture
- A generic assumption: 10 parcels and the distances of the parcels to the farm centre vary between 0 and 7 km, with an average distance of 2.9 km for the region

- logistic costs dependent on the distance

 Decisions to cultivate a crop in each field parcel, with input use decisions (yields) set up a dynamic programming problem, over all field parcels

Simulated land allocation vs. historical land allocation

Source: Dynamic economic crop rotation and management model results, Luke 2017

Scenario settings

			Price scenario	
		-20% baseline price (LP)	Baseline price (BP)	+20% baseline price (HP)
	Baseline	Baseline LP	Baseline BP	Baseline HP
Emission scenario - Climate model - combination	A2 BCCR	A2 BCCR LP	A2 BCCR BP	A2 BCCR HP
	A2 IPSL	A2 IPSL LP	A2 IPSL BP	A2 IPSL HP
	B1 GISS	B1 GISS LP	B1 GISS BP	B1 GISS HP
	B1 CSIRO	B1 CSIRO LP	B1 CSIRO BP	B1 CSIRO HP

scenarios

	Average yields 1995- 2013	Simulated Yields from economic model			
		LP	ВР	HP	
Spring wheat	3086	2886(-6.5%)	3162(+2.4%)	3168(+2.6%)	
Winter wheat	3051				
Barley	2948	2895(-1.8%)	3171(+7.6%)	3185(8.0%)	
Oats	2785	2611(-6.2%)	2870(+3.1%)	2888(+3.7%)	
Oilseed	1305	1228(-5.9%)	1376(+5.5%)	1388(+6.4%)	
Frequency of fu barley and v	ungicide treated wheat/ farm	0	0	0	
Average	pH/ farm	5.71	6.56	6.65	
Total profit €/farm/year 9290 10803		13030			
GHG emissions tons CO2 eq. /year (normalized per 10 ha/year)		24.12	30.89	34.83	

Simulated results under A2 and B1 climate scenarios

	B1 GISS			A2 IPSL				
Regional average yields kg/ha	Simulated Yield (MCWLA bio.phys. model)	Simulated Yield (Economic model)			Simulated Yield (MCWLA bio.phys. model)	Simulated Yield (Economic model)		
		LP	BP	HP	,	LP	BP	HP
Spring wheat [3086]	3927	4008 (+2.1%)	4020 (+2.4%)	4026 (+2.5%)	3685	3755 (+1.9%)	3766 (+2.2%)	3778 (+2.5%)
Winter wheat [3051]	3623				3402	-	-	-
Barley [2948]	3939	4231 (+7.4%)	4321 (+9.7%)	4396 (+11.6%)	3697	3962 (+7.2%)	4016 (+8.6%)	4101 (+10.9%)
Oats [2785]	3543	3680 (+3.9%)	3688 (+4.1%)	3711 (+4.7%)	3325	3458 (+4.0%)	3461 (+4.1%)	3472 (+4.4%)
Oilseed [1305]	1660	1761 (+6.1%)	1766 (+6.4%)	1773 (+6.8%)	1558	1647 (+5.7%)	1662 (+6.7%)	1660 (+6.5%)
Frequency of barley and	fungicide treated wheat/ farm [0]	0	112	198		0	53	177
Averag	ge pH/ farm [6.56]	6.62	6.67	6.69		6.58	6.66	6.68
Total prof [it €/farm/year 10803]	16777	20644	24474		15050	19243	22849
GHG emissions overall tons CO2 eq. /year (normalized per 10 ha/year) [30.89]		31.68	33.59	34.79		29.79	33.67	34.79

Land allocation: Baseline (left) vs. A2 IPSL (right)

GHG emissions per kg produced decrease if higher yields - increase if higher prices

(due to concave production functions, decreasing marginal effect of inputs)

	Baseline	A2 IPSL	B1 GISS			
Barley yield (kg/ha)	317	1 401	6 4321			
Total crop production (tons per year per 10 ha) Gross margin per farm per year	24.225	5 36.529	9 39.135	LP = -20%	from base	eline
(eur)(average over 30 years)	10.803	3 19.24	3 20.644	prices		
GHG emissions (tons CO2 eq. Per 10 ha)	30.89	9 33.6	7 33.59	BP = Base 2013	line prices	s 2000-
GHG emissions per ton produced (tons CO2 eq./ton)	1.28	8 0.9 2	2 0.86	HP = +20% prices	5 from bas	eline
Emissions per unit produced (tons CO2 eq./ton)			Emissions per unit (ton <mark>s</mark> CO2 eq. /ton), set aside land excluded			
LP BP	, Ht	C		LP	BP	HP
BASE 1.75 1.28	1.22	2 BASE		0.87	1.03	1.10
A2 IPSL 0.95 0.92	0.95	5 A2 IPSL		0.76	0.85	0.87
B1 GISS 0.85 0.86	0.89	9 B1 GISS		0.78	0.79	0.82

Conclusive remarks

- Crop modelling results suggest increase of spring cereals yields from current 3 t/ha up to 3.5-3.6 t/ha (winter wheat; +15-20%) and to 4 t/ha (barley, spring wheat; +30%) until 2040-2070 in A2, B1
- Higher yields incentivize higher soil pH (liming), fungicide use and thus a further increase yields by 2-12%
- Economic model results suggest that barley production becomes dominating if yields increase, due to lower (historical) gross margin variability and strong fungicide response of yields
- 26-36% higher yields would imply 50-60% higher production and 78-90% higher gross margins per farm in scenarios B1, A2 - from current low levels
- GHG emissions per kg produced decrease by 27-33%
- The results suggest that current unexploited production potential will be used if 20-30% higher yields, but 30% less GHG emissions per kg produced -There are possibilities for "sustainable intensification"

MÁCSUR

Thank you for your attention!

References:

- Liu, X., Lehtonen, H., Purola, T., Pavlova, Y., Rötter, R. & Palosuo, T. 2016. Dynamic economic modelling of crop rotations with farm management practices under future pest pressure. Agricultural Systems (2016), pp. 65-76 DOI: 10.1016/j.agsy.2015.12.003
- Lehtonen, H., Liu, X. and Purola, T. 2016. Balancing climate change mitigation and adaptation with socio-economic goals at farms in northern Europe. In: Paloviita, A. and Järvelä, M. (Eds) 2015. Climate Change Adaptation and Food Supply Chain Management (Routledge Advances in Climate Change Research), Routledge, London, 264 pp. ISBN13: 978-1138796669; http://www.tandf.net/books/details/9781317634034/. p. 132-146
- Lehtonen, H., 2001. Principles, structure and application of dynamic regional sectormodel of Finnish agriculture Academic dissertation Systems Analysis Laboratory, Helsinki University of Technology. Publications 98. Agrifood Research Finland, Economic Research (MTTL), Helsinki.
- Myyrä, S., Ketoja, E., Yli-Halla, M., Pietola, K., 2005. Land improvements under land tenure insecurity: the case of pH and phosphate in Finland. Land Econ. 81 (4), 557-569.
- Purola, T., 2013. Taudinkestävien ja tautialttiiden ohralajikkeiden taloudellinen vertailu. Master thesis University of Helsinki. Department of economics and management. (<u>https://helda.helsinki.fi/handle/10138/40225</u>)
- Tao F, Rötter RP, Palosuo T, Höhn J, Peltonen-Sainio P, Rajala A, Salo T. 2015. Assessing climate impacts on wheat yield and water use in Finland using a super-ensemble-based probabilistic approach. Climate Research, 65, 23-37.

For further information please visit: www.macsur.eu