Climate Change and Food Security: Improving the Relevance and Credibility of Global and Regional Integrated Assessments

John M. Antle

Professor of Applied Economics Oregon State University AgMIP co-PI and Regional Economics Leader

Presented at the TradeM International Workshop, November 25-27 2014, Oslo Norway

Acknowledgements

- AgMIP & collaborators (agmip.org)
- USDA Ag Research Service
- UKAID (DFID)
- USAID
- REACCH-PNA & collaborators
- everyone else I forgot to mention ...

Themes

 Many needs & opportunities to improve the relevance and credibility of global and regional integrated assessments

- NextGen stakeholders: need to improve relevance, credibility & accessibility of models
- What do we know, and what do we need to know?
- Recent advances and challenges
- New initiatives

What we know (highlights)

- CMIP climate projections
- Importance of socio-economic conditions
 new socio-economic pathways (SSPs)
- AgMIP/ISIMIP global gridded crop, global ag economic model comparisons
- Projections of food production, area, consumption, prices, trade under limited number of future conditions
- Regional studies (World Bank, EU, US etc.) of yields, economic impacts (but without socio-economic scenarios!)

What we need to know (highlights)

- Climate: variability and extremes
- Crop & livestock models
 - pests & diseases
 - systems (crop-livestock; inter-crops)
 - linkages to economics & behavior
- Economic models
 - Global/national models
 - Understand differences
 - Dynamics & disequilibria

What we need to know (cont.)

- Farm/regional models
 - distributional effects & vulnerabilities
 - adaptation, adoption (info, expectations, ...)
 - linkages to land use change, factor & product markets
- Ag pathways and scenarios (RAPS)
 - productivity trends
 - policy: domestic subsidy, environment, trade
 - inputs & cost of production
 - environmental linkages (soils, water)
 - farm size & structure, household size
 - infrastructure

But can we believe downscaled data for analysis of variability and extremes?

(a) Change in average surface temperature (1986-2005 to 2081-2100)

Change in average precipitation (1986-2005 to 2081-2100)

(b)

The Agricultural Model Intercomparison and Improvement Project

(Rosenzweig et al., PNAS 2013).

Source: IPCC AR-5, WGII, Ch 7.

Spatial coherence in downscaled yield simulations

High uncertainty in site-specific projections

Source: Author and collaborators, REACCH-PNA Project

Can we achieve consistency across models and scales? Adaptation? Dimensionality problem...

AgMIP Regional Research Teams RAPs Trends Table: SSA

Variable	CLIP – R1 Zimb	CLIP – R2 Zimb	CLIP – R1 Mozamb	CLIP – R2 Mozamb	East Africa Embu, KE	West Africa R1 Nioro	West Africa R2 Nioro	SAAMIP South Africa	SAAMIP Namibia			
Soil degradation	/			\rightarrow	\nearrow		/	\nearrow				
Pest and diseases		•					•	•			Direction and	magnitude
Extreme events				•	1		•	•			No change	
Water availability								/	/			
Farm size	/	~				1	/	/	/		Small increase	
Household size	/				/	~	/				Moderate increase	
Herd size	/			/		1	/				Large	1
Livestock Productivity	/	`		1		/		•			increase	
Fertilizer prices		1	/		1						Small decrease	\rightarrow
Fertilizer use	/		/	/	/	•	•	/	/		Moderate decrease	
Subsidies (inputs)	/	\rightarrow			•		/		•		Large decrease	
Off-farm income	/			/	1	/	/	/		1	Not included	
Improved crop use	1			/	•	/	1	/		1	in RAP or under revision	•
Information availability				•	1							
Public invest in Agriculture	/	\rightarrow	\	/	•	•	•	/				
Labor availability		-	/	/								

The Agricultural Model Intercomparison and Improvement Project

A

Can we model long run trends?

Can we model short run departures from long run trends?

Real agricultural prices have fallen since 1900, even as world population growth accelerated

Source: USDA, Economic Research Service using Fuglie, Wang, and Ball (2012). Depicted in the chart is the Grilli-Yang agricultural price index adjusted for inflation by the U.S. Gross Domestic Product implicit price index. The Grilli-Yang price index is a composite of 18 crop and livestock prices, each weighted by its share of global agricultural trade (Pfaffenzeller et al., 2007). World population estimates are from the United Nations.

Source: IPCC AR-5, WGII, Ch 7.

Model Intercomparison and Improvement Project

Global Ag-Food System Projections Projected impacts of climate change in 2050

Key crop and economic model results from the AqMIP Global Agricultural Economic Model Intercomparison Study, across crop aggregates (n = 4), models (n = 4)= 9), scenarios (n = 7), and regions (n = 13). YEXO = yield effect of climate change without technical or economic adaptation, YTOT = realized yields with after management adaptation, AREA = agricultural area in production, PROD = total production, TRSH = net imports relative to domestic production, CONS = consumption, PRICE = prices (Source: Nelson et al. 2014).

Model Intercomparison and Improvement Proje

Global Ag-Food System Projections Importance of agriculture-specific scenarios

Source: Wiebe et al. 2014

Global Ag-Food System Projections Projected prices in 2050 without climate change

AgMIP Global Agricultural Economic Model Intercomparison, Projected Changes in Commodity Prices in 2050 without Climate Change (source: Nelson et al. 2014). WHT = wheat, CGR = coarse grains, RIC = rice, OSD = oil seeds, RUM = ruminant animal products.

- Most models project average aggregate (e.g., national) availability of major food commodities
- Models do not represent entire food system, vulnerability, or indicators of all dimensions of food security

Source: IPCC AR-5, WGII, Ch 7.

AgMIP RIA method

Can we distinguish the no-climate counterfactual trend from climate adaptations?

Vulnerability: AgMIP regional assessments

Forthcoming in Hillel, D. and C. Rosenzweig, eds. *Handbook of Climate Change and Agroecosystems*, 2014

5-year project, DFID funded 8 regional teams, 18 countries, ≈ 200 scientists Data, models, scenarios designed & implemented by multi-disciplinary teams & stakeholders

Vulnerability: AgMIP regional assessments

B. Heterogeneous region

Can we combine field and farmscale models (FSIM) with populationbased models (TOA-MD) to improve regional integrated assessments?

Vulnerability: AgMIP regional assessment method Importance of distinguishing average impact and vulnerability

AgMIP Sub-Saharn Africa & South Asia

Vulnerability: AgMIP regional assessment method Importance of distinguishing average impact and vulnerability

AgMIP Sub-Saharn Africa & South Asia

40

Vulnerability: AgMIP regional assessments Importance of future socio-economic conditions to vulnerability

New Initiatives (AgMIP Phase 2)

Coordinated regional and global IA: towards AR6

- SSP extensions, global and regional RAPS
- Linkages to RIAs: productivity, prices, adaptation
- National IAV assessments

Sustainable agricultural systems

- Next Generation models pilot study
 - Use Cases
 - Knowledge products linked to modeling platform
 - Model/module integration platform
 - Modular bio-phys systems models
 - Modular farm & population economic models
- Climate Smart Ag & Sustainable Intensification
- Sustainable Food & Nutrition Security

