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MACSUR Project - Modelling European Agriculture

with Climate Change for Food Security

Scop of the project:

e How do soil properties (SOC) and yield security interact
e Where are the vulnerable regions for SOC and yield security for climate scenarios

* How does the quality of soil, meteo and managament data affect risk analyses

Crop M group — scaling exercise

e Integration of biophysical, economic and climate models

e The upscaling of ecological models has resulted in errors and uncertainty that are not
determined/quantified.

e Accurate assessment of scaling methods could help in understanding and estimating of
the quantity of the error. Therefore it helps to quantify the uncertainty in applying
ecological models for larger area.

2 o : o : ®eo|
The implication of input data aggregation in model upscaling "o | THUNEN



Applied models

DAYCENT | three different pools, two active pools, a fast, a slowand = The decomposition controlled by modifiers based on
nitrogen availability, soil water content and temperature.

a passive pool
COUP | The soil is divided into several organic pools for carbon ' Soil moisture, temperature; substrate controlled and
and nitrogen. Some of these pools are compulsory while follows first-order kinetics

others can optionally be switched on or off.

The nitrogen pools for mineralization are calculated Corg content and the CN ratio depending on

" HERMES

based on the Corg content and the CN ratio. The temperature and soil moisture, crop residues and
nitrogen pools described below and calculated the Corg manure.
assuming that the CN ratio remains constant.

MONICA Soil carbon dynamics is described using three pairs i soil temperature and moisture and describe the
(rapid and slow turn-over) of conceptional pools (soil environemntal conditions of the simulated site. Microbial
organic matter, microbial biomass and freshly added biomass death and respiration rates are additionally

organic matter). influenced by soil clay content
STICS The fresh organic matter, the microbial biomass and C:N ratio, soil temperature and water coentent, and four
humified organic matter, the last compartment being parameters: the humification constant, the
composed of an active and an inert fraction. ‘decomposition rate constant of the residues, the decay
rate of the microbial biomass and the assimilation yield
! of residue-C by the microbial biomass.
APSIM APSIM simulates the SOC in three pools: fresh organic = Decomposition rates of each pool are mainly influenced

matter pool (FOM), microbial biomass pool (BIOM), and by soil temperature and moisture.
humic matter pool (HUM)

The decomposition controlled by modifiers based on

nitrogen availability, soil water content and temperature.

' CENTURY | three different pools, two active pools, a fast, a slow [
and a passive pool
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Scaling and aggregation steps

* Resolutions: 1x1km, 10x10km, 25x25km, 50x50km, 100x100km

 Variable soil properties; constant climate and management ; cropland is
assumed to completely cover Nordhrein Westfalia (NUT2).

 Variable climate; constant soil properties and management; cropland is
assumed to completely cover Nordhrein Westfalia

* Soil properties: dominant soil

* Weather: mean values

* Scenarios: Nitrogen-water limited, water unlimited, nitrogen-water
unlimited

* Time period: 1982-2012

* Modeled crops: maize, wheat
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Soil properties — SOC 30cm (%)
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Water content at field capacity

25x25 km 50x50 km 100x100 km
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Clay content (%)

25x25 km 50x50 km 100x100 km

o g
o O scale 1km
@ scale 10km
8 O scale 25km
o @ scale 50km
v B scale 100km
o
<
— g
=] 2o
- g =
& E
o @
o 3
o
10_ (IJ 50 160 150 2(I10
' scale_1 scale_10 scale_25 scale_50 scale_100 Distance [km]
7 The implication of input data aggregation in model upscaling 030

- | THUNEN



The spatial distribution of the difference of initial

and final SOC - wheat

APSIM

COUP DayC

MEAN HERMES
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The temporal changes of the SOC for NRW - wheat
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The distribution of the changes of the SOC - wheat

(t/ha)
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Schematic illustration of disaggregation method and quantification of the

data aggregation effects (DAEs). Modified after Zhao et al. (accepted).
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ﬁi,j= DCH - OHEJ
Yoo Af;
RMSE; = |=1=°
n

DC,; is the disaggregated
values for a specific grid
cell

OH,; is the original values
(original high resolution, 1
km resolution) for a
specific grid cell

n is the number of grid
cells of the highest
resolution

I indicates different
variables

] indicates different grid
cell
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Schematic illustration of disaggregation method and quantification of the

data aggregation effects (DAEs). Modified after Zhao et al. (accepted).
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DC,; is the disaggregated
values for a specific grid
cell

OH,; is the original values
(original high resolution, 1
km resolution) for a
specific grid cell

n is the number of grid
cells of the highest
resolution

I indicates different
variables

] indicates different grid
cell
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Root-mean-square error, soil aggr., maize, scale of interest:

1x1km, 10x10km, 25x25km, 50x50km, 100x100km, NRW
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tC ha™?

Root-mean-square error, climate aggr., maize, scale of interest:

1x1km, 10x10km, 25x25km, 50x50km, 100x100km, NRW
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Comparison of the model variability and the uncertainty of

soil and climate aggregation (aggregation level 10)

Comparison of the model variability and the uncertainty of soil and climate aggregation
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Comparison of the model variability and the uncertainty of

soil and climate aggregation (aggregation level 50)

Comparison of the model variability and the uncertainty of soil and climate aggregation
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Conclusions

* The results show that the aggregation of weather data can cause significant,
but small regionalization errors in estimating C stock changes in agricultural
soils

* In contrast aggregation errors caused by soil property aggregations are high

 An aggregation of soil properties on 10x10 km cause less than 20%
regionalization errors in estimating C stock changes in agricultural soils.

» Aggregation levels at 50x50km and 100x100km resolution may lead to reliable
averages at NUTS 2 level (NRW)

* The scaling exercise shows the high sensitivity of modelled soil organic carbon
changes on the accuracy of initial C stocks

* The aggregation procedure is of high relevance for the resulting model error.
While weather aggregation by averaging resulted in a continuous decrease of
the mean model error from coarse to fine resolution the aggregation of soil
information did not.
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Thank you for your attention!
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®* RMSE is a frequently used measure of differences between value predected by

model or an estimator and the values actually observed.

®* The RMSE represent the standard deviation of the differences between
predicted and observed values.
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