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MACSUR Project - Modelling European Agriculture 
with Climate Change for Food Security 

Scop of the project: 

• How do soil properties (SOC) and yield security interact 

• Where are the vulnerable regions for SOC and yield security for climate scenarios 

• How does the quality of soil, meteo and managament  data affect risk analyses  

Crop M group – scaling exercise 

• Integration of biophysical, economic and climate models 

• The upscaling of ecological models has resulted in errors and uncertainty that are not 

determined/quantified. 

• Accurate assessment of scaling methods could help in understanding and estimating of 

the quantity of the error. Therefore it helps to quantify the uncertainty in applying 

ecological models for larger area. 
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Applied models 
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Scaling and aggregation steps 

• Resolutions: 1x1km, 10x10km, 25x25km, 50x50km, 100x100km  

• Variable soil properties; constant climate and management ; cropland is 
assumed to completely cover Nordhrein Westfalia (NUT2).  

• Variable climate; constant soil properties and management; cropland is 
assumed to completely cover Nordhrein Westfalia 

• Soil properties: dominant soil 

• Weather: mean values 

• Scenarios: Nitrogen-water limited, water unlimited, nitrogen-water 
unlimited 

• Time period: 1982-2012 

• Modeled crops: maize, wheat 
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Soil properties – SOC 30cm (%) 
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10x10 km 100x100 km 25x25 km 50x50 km 1x1 km 
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10x10 km 100x100 km 25x25 km 50x50 km 1x1 km 

Water content at field capacity 
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Clay content (%) 
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HERMES 

APSIM CENTURY COUP 

MONICA STICS 

The spatial distribution of the difference of initial 

and final SOC - wheat 
DayC 

MEAN 
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The temporal changes of the SOC for NRW - wheat 
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The distribution of the changes of the SOC - wheat 
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● DCi,j is the disaggregated 

values for a specific grid 

cell 

● OHi,j is the original values 

(original high resolution, 1 

km resolution) for a 

specific grid cell  

● n is the number of grid 

cells of the highest 

resolution 

● i indicates different 

variables 

● j indicates different grid 

cell 

Schematic illustration of disaggregation method and quantification of the 

data aggregation effects (DAEs). Modified after Zhao et al. (accepted). 
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APSIM CENTURY DayC 

STICS 

Root-mean-square error, soil aggr., maize, scale of interest:  

1x1km, 10x10km, 25x25km, 50x50km, 100x100km, NRW 

HERMES MONICA 
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APSIM CENTURY DayC 

STICS 

Root-mean-square error, climate aggr., maize, scale of interest:  

1x1km, 10x10km, 25x25km, 50x50km, 100x100km, NRW 

HERMES MONICA 
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Comparison of the model variability and the uncertainty of 

soil and climate aggregation (aggregation level 10) 
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Comparison of the model variability and the uncertainty of 

soil and climate aggregation (aggregation level 50) 
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• The results show that the aggregation of weather data can cause significant, 
but small regionalization errors in estimating C stock changes in agricultural 
soils  

• In contrast aggregation errors caused by soil property aggregations are high 
• An aggregation of soil properties on 10x10 km cause less than 20% 

regionalization errors in estimating C stock changes in agricultural soils.  
• Aggregation levels at 50x50km and 100x100km resolution may lead to reliable 

averages at NUTS 2 level (NRW) 
• The scaling exercise shows the high sensitivity of modelled soil organic carbon 

changes on the accuracy of initial C stocks 
• The aggregation procedure is of high relevance for the resulting model error. 

While weather aggregation by averaging resulted in a continuous decrease of 
the mean model error from coarse to fine resolution the aggregation of soil 
information did not. 

   

Conclusions 
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Thank you for your attention! 

The implication of input data aggregation in model upscaling 18 

Acknowledgement 
This study was supported by the BMBF/BMELV project on "Modeling European Agriculture 
with Climate Change for Food Security (MACSUR)" (grant no. 2812ERA115). 



Stefan Frank 

References   

• Bierkens, M.F.P., Finke, P.A., de Willigen, P., 2000. Upscaling and downscaling methods for environmental research. Kluwer Academic 

Publisher, Dordrecht the Netherlands, 2000, ISBN 0-7923-6339-6  

• Ewert, F., van Ittersum, M.K., Heckelei, T., Therond, O., Bezlepkina, I., Andersen, E., 2011. Scale changes and model linking methods for 

integrated assessment of agri-environmental systems. Agriculture, Ecosystems & Environment 142, 6-17. 

• Kätterer, T., Bolinder, M. A., Andrén, O., Kirchmann, H., Menichetti, L. (2011) Roots contribute more to refractory soil organic matter than 

aboveground crop residues, as revealed by a long-term field experiment. Agriculture Ecosystems and Environment. Volume: 141 Number: 1-

2, pp 184–192.http://dx.doi.org/10.1016/j.agee.2011.02.02 

• Parton, B., Ojima, D., Del Grosso, S., Keough, C. (2001) CENTURY Tutorial. 

http://www.nrel.colostate.edu/projects/century/century_tutorial.pdf 

• Parton, W.J., B. McKeown, V. Kirchner, and D.S. Ojima. 1992. CENTURY Users Manual. Colorado State University, NREL Publication, Fort 

Collins, Colorado, USA. 

• Zhao, Gang; Hoffmann, Holger; van Bussel, Lenny G.J.; Enders, Andreas; Specka, Xenia; Sosa, Carmen; Yeluripati, Jagadeesh; Tao, Fulu; 

Constantin, Julie; Raynal, Helene; Teixeira, Edmar; Grosz, Balázs; Doro, Luca; Zhao, Zhigan; Nendel, Claas; Kiese, Ralf; Eckersten, Henrik; 

Haas, Edwin; Vanuytrecht, Eline; Wang, Enli; Kuhnert, Matthias; Trombi, Giacomo; Moriondo, Marco; Bindi, Marco; Lewan, Elisabet; Bach, 

Michaela; Kersebaum, Kurt-Christian; Rötter, Reimund; Roggero, Pier Paolo; Wallach, Daniel;  Cammarano, Davide; Asseng, Senthold; Krauss, 

Gunther; Siebert, Stefan; Gaiser, Thomas; Ewert, Frank (2014) Effect of weather data aggregation on regional crop simulation for different 

crops, production conditions, and response variables. Climate Research (submitted) 

 

  

 

   19 The implication of input data aggregation in model upscaling 

http://www.nrel.colostate.edu/projects/century/century_tutorial.pdf
http://www.nrel.colostate.edu/projects/century/century_tutorial.pdf


Stefan Frank 

RMSE 

• RMSE is a frequently used measure of differences between value predected by 

model or an estimator and the values actually observed.  

• The RMSE represent the standard deviation of the differences between 

predicted and observed values. 
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