

Sensitivity and uncertainty analysis of grassland models in Europe and Israel

Renáta Sándor, S Ma, M Acutis, Z Barcza, L Doro, D Hidy, M Köchy, J Minet, E Lellei-Kovács, A Perego, S Rolinski, F Ruget, G Seddaiu, L Wu, G Bellocchi

MACSUR Conference 2015 Integrated Climate Risk Assessment in Agriculture & Food University of Reading, UK Wednesday 8th – Friday 10th April 2015

Grassland model inter-comparison in MACSUR

Construction:

- ✓ Model inter-comparison at selected sites in Europe (plot-scale simulations)
- ✓ Guidelines and minimum dataset requirement for model evaluation
- ✓ Common protocol for the modelling teams
- ✓ Data segregation
- ✓ Evaluation and uncertainty analysis of model outputs

Aims:

- → To quantify uncertainties on yield and carbon-flux outputs
- → To explore the sensitivity of grassland models to climate change factors
- → To analyze the correlation between the ensemble and the individual model results
- →To establish highlights for getting better estimations

Grassland modelling

Simulations: uncalibrated, calibrated, validated, sensitivity (CO₂, Temp, Prec.)

Study sites

Flux-tower observational sites (GPP, NEE, RECO, ET, ST, SWC, yield) Data: hourly resolution

Grassland experimental sites (yield) Data: cutting events

Kemp-1: intensive (4 cuts/year) Kemp-2: extensive (2 cuts/year)

Roth-1: NH4 – fertilization **Roth-2:** NO3 – fertilization

LAQ1: intensive (N fertilized) LAQ2: extensive (non fertilized)

Matta

Study sites

GPP sensitivity to CO₂ scenarios: ensemble model

Sensitivity of outputs to CO₂ scenarios at GRI

Baseline: 380 ppm

Sensitivity of outputs to CO₂ scenarios at LAQ1

GPP sensitivity to T scenarios: ensemble model

Sensitivity of outputs to T scenarios at GRI

Sensitivity of outputs to T scenarios at LAQ1

GPP sensitivity to P scenarios: ensemble model

Sensitivity of outputs to Pscenarios at GRI

Sensitivity of outputs to Pscenarios at LAQ1

Sensitivity of yield biomass to CO₂

Conclusions

The responsiveness of different models to climate change factors shows a wide spread of the outputs that is difficult to interpret based only on visual basis

• Some models are not sensitive at all while some models do not show a down-regulation of photosynthesis at elevated CO_2 concentrations (so that simulated GPP could indefinitely increase with increasing atmospheric CO_2 concentrations)

The ensemble average tends to be a better representation of the observed outputs then single model realizations, which is a similar conclusion to the one obtained with crop models in other studies

