

# Heat tolerance is a key for high wheat yields in Europe under climate change

Mikhail Semenov & Pierre Stratonovitch

Rothamsted Research





### Food security: global food demand



(Ray et al, PLoS ONE, 2013)

2.4% yield increase per year required to double food production by 2050



### Wheat yield stagnation in Europe





## World record wheat yields

- In 1981, the world record wheat yield of 13.99
  t/ha at a field scale was achieved in Scotland
- In 2010, a NZ farmer had a new record of 15.64 t/ha (cv. Einstein)
- Average wheat yield in the UK is about 8 t/ha



20:20 Wheat <sup>®</sup> aims to achieve yield potential of 20 t/ha in 20 years



## Adapting wheat for uncertain future

### Challenges:

- Large uncertainty in predicting future environments and climates
- No clear targets for breeding: future threats to wheat production are unknown
- Candidate-cultivars can be only tested for the current, not future conditions

### Key:

 Modelling is a powerful tool to design wheat ideotypes for a changing climate and identify targets for crop improvement



### Modelling framework: wheat ideotypes





### Sirius: crop simulation model



BBSRC

ROTHAMSTED

### LARS-WG: downscaling climate projections



Local-scale climate scenarios for impact assessments



### Coding wheat ideotypes: cultivar parameters

#### Phenology

- phyllochron **Ph**: 70 140
- daylength response **PP**: 0.05 0.7
- duration of grain filling **Gf**: 500 900

#### Canopy

- max leaf size **A**: 0.003 0.01
- "stay green" **S**: 1-2



#### **Tolerance to drought**

- response of photosynthesis to water stress Wsa: 0.1 – 0.21
- leaf senescence **Wss**: 0.12 0.19

#### **Roots efficiency**

• water uptake **Ru**: 1 - 7



### Optimisation: evolutionary algorithm

{ Ph,Pp,Gf,A,S,Wsa,Wss,Ru}



#### **Objective:**

maximise 100yr mean yield for ideotypes with yield CV < 15% and HI95 < 0.63

#### **Stopping rule:**

search stops when Y95 exceeds a target, or no further improvement is possible

Optimization for a single site requires evaluation of ~50,000 ideotypes. However, the algorithm may converge to a local, not global, optimum. Therefore, we start with 20 "parents" randomly scattered in the parameter space.



### Target environments: Europe, CMIP5, 2050





### Substantial increase in yield by 2050



Modelling predicts yield increase of **56-109** % for ideotypes optimized for future climates compared with current wheat cultivars.



# Effect of heat stress and drought around flowering on grain yield



High temperature and water stress during booting reduce grain number and grain weight in winter wheat



### Heat tolerance is a key trait in S.Europe



In Seville, HT ideotypes can achieve 111% higher yield potential compared with HS, in Debrecen yield CV increased by 265% for HS ideotypes



BBSRC

### Lack of tolerance to heat stress in European wheats



(Semenov et al., J Cer Sci 2014)

Effect of temperature during 3-day transfers to controlled environment cabinets during anthesis on (A) grain yield and (B) grains per spikelet (C) grain weight of S.European (**MV Emese, Renesansa**) and UK wheat cultivars (**Mercia, Savannah**)



### CMIP5: uncertainty in climate projections



(IPCC AR5 WG1)

RCP4.5 – RCP85; GISS - HadGM



### Quantifying uncertainty in predictions



(Semenov & Stratonovitch, Clim Res 2015)

Sensitivity to heat stress around flowering and grain filling will seriously limit wheat yield potential in S.Europe



### Key messages

- Wheat yield potential can be substantially increased in Europe by 2050.
- Increase in light use efficiency, extended duration of grain filling and optimal phenology are key factors. In water-limited environments, increased drought tolerance will be needed.
- To achieve the high yield potential in S.Europe, tolerance to heat stress is required. Sensitivity to heat stress not only reduces mean yield, but increases its variability.
- Identified key traits for wheat improvement are robust and unaffected by the uncertainty in CMIP5 climate projections



### Acknowledgements

Pete Jamieson, NZ (sailing around the World)



ISP 20:20 Wheat <sup>®</sup> for collaborative work on crop modelling

ADAPTAWHEAT for collaborative work on crop modelling



Ag

MACSUR for collaborative work on crop modelling

Henry Barber (PhD student)

**Mike Gooding** 

AgMIP for collaborative work on model intercomparison

