

Oristano, Sardinia, Italy

Winner and losers from climate change in agriculture: a case study in the Mediterranean basin

<u>Pier Paolo Roggero</u>, Giovanna Seddaiu, Luigi Ledda, Luca Doro, Paola Deligios, Thi Phuoc Lai Nguyen, Massimiliano Pasqui, Sara Quaresima, Nicola Lacetera, Raffaele Cortignani, Davide Dell'Unto, Gabriele Dono

Framing research question(s):

- How to support effective adaptive responses to CC and stimulate proactive attitudes of farmers, policymakers & researchers?
 - Which level of response are we interested to support?
 - Level 1 No response
 - Level 2 Compliant
 - Level 3 Efficient management
 - Level 4 Breakthrough projects, strategic, win-win
 - Level 5 Strategic management at all levels to ensure resilence
 - Level 6 Champion, visionary, influencial organization
- How to co-construct the nature of the issues about CC adaptation?
 - i.e.: How to identify the right questions to engage pathways within the "adaptive space" (Wise et al GEC)?

Hybrid knowledge paradigm

- "CC adaptation" is a socially constructed concept
- Contextualized background experience informs...
 - ...CC understanding and response-abilities/capacities
 - ... farmers' CC perception that drive changes in practice

Nguyen et al 2014 Int J Agric Sustain

The «Oristanese» case study

- One of the 6 Italian case studies (<u>www.agroscenari.it</u>)
 - Interdisciplinary team @work
 - Contextual data available from other projects
- Very diversified agricultural district in a Mediterranean context
 - Irrigated and rainfed farming systems
 - Variety of cropping systems, intensity levels, farm size
- Multiple stakeholders
 - Cooperative agro-food system
 - Producers' organizations (rice, horticulture)
 - Variety of extensive pastoral systems

Oristanese

Dairy Cattle

Rice

Main farming systems

silage maize Italian ryegrass triticale, alfalfa

Permanent or temporary pastures, autumnwinter hay-crops (winter grazing+ hay or grain)

MÁCSUR

Horticulture

Dairy sheep

1 11 1 72 L

	% total land area	% total net income		
Irrigated crops	57.7	82.5		
Rice	5.2	4.2		
Citrus	1.6	3.9		
Dairy cattle A	7.6	32.6 38 3		
Dairy cattle B	2.4	5.7		
Greenhouse	1.1	1.7		
Vegetables - Cereals	23.5	24.2		
Cereals - Forages	15.2	8.7		
Tree and arable crops	1.1	1.5		
Rainfed crops	42.3	17.5		
Vegetables - Fruit	0.8	2.3		
Cereals - Forages	4.4	2.0		
Sheep A	7.4	2.5		
Sheep B	14.6 - 37.2	3.8 - 12.2		
Sheep C	15.2	6.9		

Cumulative ETn in April-October

Spring Hay yield from rain-fed crops

THI max in May-September

Net Income per farming system typology				
Earming system type	2000-10	2020-30		
ranning system type	(k€)	(Δ%)		
Rice	4,097	+9.9		
Vegetables - Cereals	18,656	-0.8		
Cereals - Forages	7,593	+1.4		
Cattle A	26,355	-5.1		
Cattle B	6,825	-5.9		
Sheep A	2,461	-5.3		
Sheep B	1,984	-11.8		
Sheep C	3,984	-7.4		
Other	3,721	+0.1		

Shift of the district **economic performance** driven by CC variables considered in the assessment, by sub-zone

	Weights		∆% 2020-30 vs 2000-10		
Economic indicators	Irrigated	Rainfed	Irrigated	Rainfed	Total area
Total revenues	100	100	-0.4	+0.8	-0.3
Variable costs	64	62	+0.5	+5.5	+1.1
Technical means	33	23	+0.8	+8.1	+1.5
Feed	11	16	-5.4	+29.3	+0.7
Extra-farm labor	4	8	-0.6	-8.0	-2.6
Payments for irrigation	1	0.1	+1.2	0.0	1.2
Well water pumping	0.1	0.6	-0.2	+1.0	0.5
Gross margin	52	7	-1.5	-3.8	-1.9
Net income	38	47	-2.1	-5.4	-2.6

Farmers' perceptions Nguyen et al submitted

NIVERSITÀ

Annual mean temperature anomaly for Tmax and Tmin at Santa Lucia Station (Oristano) from 1959 to 2012

Actions already taken by farmers to cope with climate variability

Practice	Hort	Rice	Cattle	Sheep
Adopt new agronomic practices	60%	25%		
Change/diversify crops	80%			
Improve irrigation systems	100%		55%	
Improve animal health and welfare			88%	<mark>4</mark> 2%
Change/improve the diet of animals			66%	42%
Follow daily weather forecast	60%	75%	20%	57%
None	0%	25%	1%	29%

Nguyen et al submitted

Actions farmers think to plan in case of climate worsening

Practice	Hort	Rice	Cattle	Sheep
Improve farm infrastructures			89%	57%
Adopt new tech (i.e. air conditioning			89%	
for animals, video surveillance)				
Improve water management	80%	100%	78%	28%
More interactions with technical	50%		78%	50%
advisors, colleagues, neighbors	5070		7070	5070
Participate to social networks	>65%	>65%	>65%	14%
Consult weather forecast	80%	80%	80 <mark>%</mark>	80%
Do nothing		16%		16%

Nguyen et al submitted

Emerging outcomes

- The dairy cattle coop is developing a new win-win pathway linking hiinput dairy cattle farming with low input beef cattle grazing systems
- The local government is investing in the EIP for supporting the local beef production chain to reduce meat imports and enhance pasture biodiversity and ecosystem services (eg wildfire prevention)

Emerging challenges

Adaptive responses as co-evolution pathways

- Select preferred and monitor Adaptation options and risk Adaptation options and risk Adaptation options and risk
- design social learning spaces for researchers, stakeholders and policy makers

MéSUR¥

• combining integrated assessment modeling and social learning facilitation

http://macsur.eu/index.php/regional-case-studies/