GHG Emissions from Milk Production

Menardo S. *, Engelke S.\#, Metges C.C.", Krüger V. ${ }^{\circ}$, Berg W.* *Leibniz Institute for Agricultural Engineering, Potsdam-Bornim (ATB) \#Leibniz Institute for Farm Animal Biology, Dummerstorf (FBN) ${ }^{\circ}$ Danone GmbH, Haar

Research Questions

Is it possible to mitigate GHG emissions from a dairy farm by modifying the diet?
What is the potential of the basal diet and dietary fat sources to reduce methane emission of cows?

Introduction

Analysis of the relationship between dairy cow diets and GHG emissions from enteric fermentation and excrements at laboratory and field scale

Methods

- Monitoring of GHG emissions $\left(\mathrm{CH}_{4}\right)$ from enteric fermentation of 20 cows in respiration chambers fed with four different diets
- Determining the biogas yield and quality of the excrements (according to VDIGuideline 4630) representing the CH_{4} emission potential
- Collection of data on diets, manure management and milk production from 21 farms located in three regions of Germany
- Development of a model for the calculation of GHG emissions at farm scale

Preliminary Results

Fig. 1. Performance and methane emission data (10 cows/diet) with 4 diets (diets: MS, maize silage-based; MSL, MS + linseed; GS, grass silage; GSL, GS + linseed; LSM \pm SE)

Fig. 2. Methane emission ($\mathrm{L}_{\mathrm{N}} \mathrm{CH}_{4} \cdot \mathrm{~kg}^{-1} \mathrm{ODM}$) from the excrements produced by dairy cows fed with 5 diets (basal diet and see legend Fig. 1)

Next steps

- Complete balance of emitted $\mathrm{GHG}\left(\mathrm{CH}_{4}\right.$ and $\left.\mathrm{N}_{2} \mathrm{O}\right)$ at farm scale through the validated mathematical model
- Improving of the CH_{4} estimation model based on the fatty acid pattern of the produced milk

