

science for global insight

Food and nutrition security in Europe – a quantification of multistakeholder scenarios

Deppermann, A. ¹⁾, Verfoort, J. ²⁾, Havlík, P. ¹⁾, Leclère, D. ¹⁾
 ¹⁾ Ecosystems Services & Management Program International Institute for Applied Systems Analysis (IIASA), Austria
 ²⁾ Environmental Change Institute - University of Oxford

ITASA

Depperman A. et al., LiveM conference 2016, Postdam, 16/06/2016

5

ILASA

Stakeholder process for scenarios

Stakeholder process for scenarios

A pool of stakeholders

- Institutional bodies: European Commission, MS Ministries
- Academics
- Private actors of the agrifood chain
- NGOs

A three-stage process with consultation on:

- ▶ i. consult on relevant drivers → selection of 8 most important + CC
 - Consumption patterns, envtl degradation, poverty & inequality, social & technical innovation, urban/rural population dynamics, market concentration, trade agreements, resource use
- ii. stages in drivers (e.g., 'rising' inequality + 'stable' population + degraded 'evnt') → elimination of impossible combinations & selection of 4 contrasted ones (OLDFAR model)
- ▶ iii. Further characterization of the 4 narratives

Explorative Scenarios - narratives

Fed up Europe

- unhealthy diets
- negative environmental impacts
- low poverty but high inequality
- low innovation but free markets
- resource crisis

The Retrotopia

- migrants are kept out
- greying societies
- unhealthy vegan/vegetarians
- low poverty with low inequality
- high innovation
- protected markets

The Protein Union

- creating new sources of protein
- high meat then insects & art. meat
- high poverty, low inequality
- high innovation
- protected markets
- resource scarcity

The Price of Health

- Europeans returning to rural lives
- strong government
- healthy vegan/vegetarian food
- high poverty and inequality
- high innovation
- protected markets

Stakeholder process for scenarios

A pool of stakeholders

- Institutional bodies: European Commission, MS Ministries
- Academics
- Private actors of the agrifood chain
- NGOs

A three-stage process with consultation on:

- ▶ i. consult on relevant drivers → selection of 8 most important + CC
 - Consumption patterns, envtl degradation, poverty & inequality, social & technical innovation, urban/rural population dynamics, market concentration, trade agreements, resource use
- ii. stages in drivers (e.g., 'rising' inequality + 'stable' population + degraded 'evnt')
 - elimination of imp. combinations & selection of 4 narratives (OLDFAR model)
- iii. Further characterization of the 4 narratives
- Scenario quantification (based on SSP & RCP scenarios)

Population – EU28

Climate scenario development

Yield changes for cereals in EU28

NoCC – no climate change

S

- Rcp8p5 climate change impacts with CO² fertilization effects
- NoC8p5 without CO² fertilization effect

Exogenous livestock production efficiency changes

Further assumption on:

- Diet preferences
- Trade openness
- etc.

The model

GLOBIOM

- Global scale model based detailed spatial resolution (>200k cells)
- Partial equilibrium
 - Agricultural, wood and bioenergy markets
 - 30 world regions
 - Bilateral trade flows based on spatial equilibrium approach
- Bottom-up approach
 - Explicit description of production technologies a la Leontief
 - Technologies specified by production system and grid cell
- Linear programming approach
 - Maximization of consumer + producer (incl. trade costs) surplus
 - Non linear expansion costs
 - Optimization constraints
- Base year: 2000
- Time step: 10 years, time horizon: 2030/2050 but also 2100

Livestock

Gridded Livestock of the World – Robinson et al. (2011)

Depperman A. et al., LiveM conference 2016, Postdam, 16/06/2016

Livestock production systems distribution

Sere and Steinfeld (1996) classification updated by Robinson et al. (2011)

Production systems parameterization

Herrero et al. (2013)

11ASA

Ruminant production efficiency

Herrero et al. (2013)

RESULTS

Domestic use of crops (CRP) and livestock products (LSP) in the EU28 (Index 2010 = 1)

Shares of calories from milk and meat in EU28 diet

Net trade (production – consumption) in EU28

EU28 price developments for *livestock* products

Land use change in 1000 ha by land cover class at EU28 level in 2050 compared to 2010

Further results available on:

- Commodity specific results (beef, milk, wheat...)
- Production quantities
- Feed ratios
- Fertilizer use
- Water consumption for irrigation
- Emissions

. . .

- + Results for the rest of the world
- + Climate change

→ Potential future connection with regional/local livestock sector (case) studies

Implications for the livestock sector

- Main driver: exogenous preference changes
 (→ towards vegetarian diets in 2 scenarios)
- Livestock production follows demand trends
- Trade compensates partly
- → Less pasture and cropland use, lower GHG emissions, less fertilization
- Main production side drivers:
 - environmental legislation (GHG taxes)
 - technical progress
- \rightarrow Drive prices

Thank you !

leclere@iiasa.ac.at depperma@iiasa.ac.at www.globiom.org