Assessing the impact of agro-climatic factors and farm characteristics on the yield variation of the Norwegian fruit sector

Tibor Marton 9-12 Oct. 2016 MACSUR on MS Finnmarken

Introduction I.

- Main drivers of ag. yields:
 - Technology
 - R&D (new hybrids etc.)
 - Weather
 - Etc.
- Common sense and anecdotal observations (remember the Tromsø presentation) revealed extreme events tended to impact wide geographic areas
- This was called the «systemic» nature of agriculture

Introduction II.

 Annual production shocks are driven by yearto-year weather variability (weather is in the production function)

-> identifying the drivers is well-researched, but little attention was payed which of these shocks aggregate up to a regional or national level

Some Literature I.

 Goodwin (2015AmJAgricEcon) linked yield correlation to the weather and he found that weather events drive yields

- He examined this phenomenon by considering the relationship between geographical distance and linear Pearson correlation coefficient
- (it's not a new thing, crop insurance economists use it all the time, but with his data he showed that the dependence concept lays under the observations*)

Some Literature II.

- Tack and Holt (2016, ClimaticCh) found that spatial correlation roughly double in both good and bad years relative to normal years (important for climate change, food price volatility, crop insurance & yield modeling literature)
- They consider several functional forms for conditioning spatial correlations on weather and find that less flexible relationships generate misleading results

Shortcomings

- Both papers uses *«a bit»* aggregated data
 - County level and state level, resp. (the reason is lacking data on the farm level)
 - Tack and Holt note that their regression framework could be generalized to county level which would cause larger crosssections but smaller time-series dimension.
- Weather is measured as an aggregate index across several temperature and precipitation variables.
- As such, they cannot distinguish between the effects of draught versus extreme heat.
- However both have been found to be significant drivers of mean crop yields, and this likely extends to spatial yield correlations as well.
- Million dollar question: Which one induces larger changes in correlations than the other? They leave this open for future research

Spatial autocorrelation I.

- Observations made at different locations might not be independent
- Assumption: measurements made at nearby locations may be closer in value than measurements made further apart
- On the term «autocorrelation»: correlation of a variable with itself

Spatial autocorrelation II.

- Positive: when similar values occur near one another
- No: random locations (general assumption)
- Negative: dissimilar values occure near one another

Negative spatial autocorrelation

Positive spatial autocorrelation

No spatial autocorrelation

Source: stolen from Google

Let's get the job done

- Need to define what is meant by two observations are close to each other, like a distance measure
- Called *«distance weight matrix»* which defines the relationships between locations where measurements are made (nxn)
- Weight?!: can be fixed (binary -> k-nearest) and weighted (inverse distance, raw standardized etc.)

Moran's I

- Global spatial autocorrelation for continuous data
- It is based on cross-products of the deviations from the mean and is calculated for observations on a variable at locations *i*, *j* as:

$$I = \frac{n}{S_0} \frac{\sum_{i} \sum_{j} w_{ij} (x_i - \overline{x}) (x_j - \overline{x})}{\sum_{i} (x_i - \overline{x})^2}$$

- -1/(n-1): expectation of MI tends to zero (in the absence of sp.corr.)
- Geary's C statistic (Geary 1954) is based on the deviations in responses of each observation with one another

Norwegian fruit industry + poteter

- Farm-level horticulture data (farmers got subsidies after these registered volumes)
- 6 products:
 - Apple, pear merged (juice issue)
 - Plum
 - Potato
 - Strawberry
 - Other berries: BRINGEBÆR, SOLBÆR, RIPS, HAGEBLÅBÆR, STIKKELSBÆR

Weight matrices

- Most controversial issue in spatial models (mostly arbitrary, usually not robust, BUT...)
- Systematic testing makes sense
- Keep it simple for now,
 - D- distance function: 10k, 20k, 30k, 40k, 50k
 - K- nearest neighbor function: 10

	years 🌣	myapple 🌻	myplum 🌣	mycherries 🍦	myjordbar 🏺	myberr 🌣	mypoteter 🏺
1	2002	781.3579	515.5554	254.5138	540.7011	569.7522	696.5924
2	2003	535.7069	363.8950	203.2240	378.6443	976.6095	935.2527
3	2004	686.0725	435.9162	<mark>316.6032</mark>	<mark>518.1105</mark>	565.9223	675.3845
4	2005	466.0768	333.7572	243.4731	507.2534	579.9146	731.1029
5	2006	691.2889	412.6428	<mark>382.6622</mark>	<mark>513.8112</mark>	592.5815	761.0512
6	2007	<mark>492.149</mark> 4	<mark>386.6293</mark>	231.1 <mark>58</mark> 6	488.1710	540.8959	738.2663
7	2008	758.67 <mark>6</mark> 9	348.1263	285.9190	517.5 <mark>4</mark> 16	519.7586	953.3275
8	2009	580.6163	353.3 <mark>4</mark> 47	348.3503	502.9935	<mark>682.4938</mark>	660.3078
9	2010	619.0466	352.9828	269.5453	526.1208	568.1885	644.4539
10	2011	629.3266	309.8652	303.5072	441.4283	564.4568	667.7827
11	2012	424.1327	174.9376	183.0325	308.3281	331.5462	332.0094
12	2013	569.8520	150.4696	194.9988	417.3259	357.0988	492.0783
13	2014	424.1954	183.5525	208.6980	156.0542	231.8563	309.6877
14	2015	1027.0227	320.7684	508.4455	414.9164	616.1209	749.3386

DOES THE DATA EXHIBIT SPATIAL AUTOCORRELATION OR NOT?

- If not, go on with the standard non-spatial models
- If so, then formulate spatial models

		*	abie 1. opac				
	years	d10	d20	d30	d40	d50	k10
1	2002	-0.028	-0.026	-0.020	0.022 .	-0.020	-0.014
2	2003	0.122 ***	0.088 ***	0.089 ***	0.086 ***	0.091 ***	0.192 ***
3	2004	0.090 ***	0.059 ***	0.051 ***	0.047 ***	0.052 ***	0.128 ***
4	2005	0.132 ***	0.083 ***	0.087 ***	0.080 ***	0.085 ***	0.187 ***
5	2006	0.061 ***	0.038 ***	0.045 ***	0.042 ***	0.045 ***	0.085 ***
6	2007	0.043 **	0.017 .	0.015 *	0.011 *	0.000	0.090 ***
7	2008	0.051 ***	0.017 *	0.031 ***	0.027 ***	0.022 ***	0.089 ***
8	2009	0.035 *	-0.015	-0.007	0.000	-0.000	0.061 ***
9	2010	0.047 **	0.027 *	0.035 ***	0.036 ***	0.030 ***	0.085 ***
10	2011	0.134 ***	0.072 ***	0.084 ***	0.079 ***	0.090 ***	0.152 ***
11	2012	0.405 ***	0.334 ***	0.355 ***	0.355 ***	0.363 ***	0.437 ***
12	2013	0.283 ***	0.215 ***	0.230 ***	0.234 ***	0.219 ***	0.307 ***
13	2014	0.208 ***	0.153 ***	0.165 ***	0.164 ***	0.152 ***	0.261 ***
14	2015	0.081 ***	0.067 ***	0.067 ***	0.071 ***	0.061 ***	0.110 ***

Table 1: Spatial correlation of APPLE

	years 🌣	myapple 🌻	myplum 🌣	mycherries 🍦	myjordbar 🏺	myberr 🌣	mypoteter 🏺
1	2002	781.3579	515.5554	254.5138	540.7011	569.7522	696.5924
2	2003	535.7069	363.8950	203.2240	378.6443	976.6095	935.2527
3	2004	686.0725	435.9162	<mark>316.6032</mark>	<mark>518.1105</mark>	565.9223	675.3845
4	2005	466.0768	333.7572	243.4731	507.2534	579.9146	731.1029
5	2006	691.2889	412.6428	<mark>382.6622</mark>	<mark>513.8112</mark>	592.5815	761.0512
6	2007	<mark>492.149</mark> 4	<mark>386.6293</mark>	231.1 <mark>58</mark> 6	488.1710	540.8959	738.2663
7	2008	758.67 <mark>6</mark> 9	348.1263	285.9190	517.5 <mark>4</mark> 16	519.7586	953.3275
8	2009	580.6163	353.3 <mark>4</mark> 47	348.3503	502.9935	<mark>682.4938</mark>	660.3078
9	2010	619.0466	352.9828	269.5453	526.1208	568.1885	644.4539
10	2011	629.3266	309.8652	303.5072	441.4283	564.4568	667.7827
11	2012	424.1327	174.9376	183.0325	308.3281	331.5462	332.0094
12	2013	569.8520	150.4696	194.9988	417.3259	357.0988	492.0783
13	2014	424.1954	183.5525	208.6980	156.0542	231.8563	309.6877
14	2015	1027.0227	320.7684	508.4455	414.9164	616.1209	749.3386

3			apro 1. spa	eren correrente			
	years	d10	d20	d30	d40	d50	k10
1	2002	-0.062	-0.008	-0.011	-0.014	-0.007	0.014
2	2003	0.109 ***	0.044 ***	0.018 .	0.014 .	0.015 .	0.172 ***
3	2004	0.084 ***	0.053 ***	0.040 ***	0.030 **	0.029 **	0.158 ***
4	2005	0.241 ***	0.165 ***	0.151 ***	0.139 ***	0.134 ***	0.224 ***
5	2006	0.052 **	-0.001	0.000	0.007	0.003	0.154 ***
6	2007	0.173 ***	0.140 ***	0.131 ***	0.122 ***	0.127 ***	0.190 ***
7	2008	0.043 *	-0.003	-0.005	-0.001	-0.017	0.125 ***
8	2009	0.137 ***	0.134 ***	0.147 ***	0.151 ***	0.153 ***	0.176 ***
9	2010	0.039 *	0.008	0.025 *	0.026 *	0.023 *	0.071 ***
10	2011	0.087 ***	0.087 ***	0.111 ***	0.103 ***	0.086 ***	0.108 ***
11	2012	0.223 ***	0.240 ***	0.318 ***	0.308 ***	0.294 ***	0.281 ***
12	2013	0.308 ***	0.309 ***	0.293 ***	0.289 ***	0.299 ***	0.280 ***
13	2014	0.048 *	0.035 *	0.007	-0.011	0.043 **	0.067 **
14	2015	0.111 ***	0.048 **	0.086 ***	0.086 ***	0.087 ***	0.146 ***

Table 1: Spatial correlation of PLUM

	years 🌣	myapple 🌻	myplum 🌣	mycherries 🍦	myjordbar 🏺	myberr 🌣	mypoteter 🏺
1	2002	781.3579	515.5554	254.5138	540.7011	569.7522	696.5924
2	2003	535.7069	363.8950	203.2240	378.6443	976.6095	935.2527
3	2004	686.0725	435.9162	<mark>316.6032</mark>	<mark>518.1105</mark>	565.9223	675.3845
4	2005	466.0768	333.7572	243.4731	507.2534	579.9146	731.1029
5	2006	691.2889	412.6428	<mark>382.6622</mark>	<mark>513.8112</mark>	592.5815	761.0512
6	2007	<mark>492.149</mark> 4	<mark>386.6293</mark>	231.1 <mark>58</mark> 6	488.1710	540.8959	738.2663
7	2008	758.67 <mark>6</mark> 9	348.1263	285.9190	517.5 <mark>4</mark> 16	519.7586	953.3275
8	2009	580.6163	353.3 <mark>4</mark> 47	348.3503	502.9935	<mark>682.4938</mark>	660.3078
9	2010	619.0466	352.9828	269.5453	526.1208	568.1885	644.4539
10	2011	629.3266	309.8652	303.5072	441.4283	564.4568	667.7827
11	2012	424.1327	174.9376	183.0325	308.3281	331.5462	332.0094
12	2013	569.8520	150.4696	194.9988	417.3259	357.0988	492.0783
13	2014	424.1954	183.5525	208.6980	156.0542	231.8563	309.6877
14	2015	1027.0227	320.7684	508.4455	414.9164	616.1209	749.3386

	years	d10	d20	d30	d40	d50	k10
1	2002	0.035	0.068	0.064.	0.06555 .	0.066 *	0.016
2	2003	0.248 ***	0.222 ***	0.220 ***	0.21870 ***	0.204 ***	0.197 ***
3	2004	0.201 ***	0.194 ***	0.171 ***	0.15740 ***	0.147 ***	0.153 ***
4	2005	0.281 ***	0.244 ***	0.199 ***	0.23496 ***	0.208 ***	0.243 ***
5	2006	0.253 ***	0.229 ***	0.159 ***	0.14403 ***	0.142 ***	0.191 ***
6	2007	0.097 **	0.113 ***	0.067 ***	0.04972 **	0.036 *	0.005
7	2008	0.290 ***	0.291 ***	0.296 ***	0.32078 ***	0.312 ***	0.327 ***
8	2009	0.370 ***	0.325 ***	0.310 ***	0.30456 ***	0.277 ***	0.264 ***
9	2010	0.360 ***	0.375 ***	0.368 ***	0.29427 ***	0.271 ***	0.351 ***
10	2011	0.243 ***	0.241 ***	0.252 ***	0.19763 ***	0.157 ***	0.264 ***
11	2012	0.256 ***	0.258 ***	0.301 ***	0.25503 ***	0.230 ***	0.277 ***
12	2013	0.492 ***	0.298 ***	0.314 ***	0.23843 ***	0.255 ***	0.289 ***
13	2014	0.472 ***	0.425 ***	0.414 ***	0.37997 ***	0.378 ***	0.388 ***
14	2015	0.030	0.011	0.024	0.00068	-0.025	0.031

Table 1: Spatial correlation of CHERRIES

	years 🌣	myapple 🌻	myplum 🌣	mycherries 🍦	myjordbar 🏺	myberr 🌻	mypoteter 🏺
1	2002	781.3579	515.5554	254.5138	540.7011	569.7522	696.5924
2	2003	535.7069	363.8950	203.2240	378.6443	976.6095	935.2527
3	2004	686.0725	435.9162	<mark>316.6032</mark>	<mark>518.1105</mark>	565.9223	675.3845
4	2005	466.0768	333.7572	243.4731	507.2534	579.9146	731.1029
5	2006	691.2889	412.6428	<mark>382.6622</mark>	<mark>513.8112</mark>	592.5815	761.0512
6	2007	<mark>492.149</mark> 4	<mark>386.6293</mark>	231.1 <mark>58</mark> 6	488.1710	540.8959	738.2663
7	2008	758.67 <mark>6</mark> 9	348.1263	285.9190	517.5 <mark>4</mark> 16	519.7586	953.3275
8	2009	580.6163	353.3 <mark>4</mark> 47	348.3503	502.9935	<mark>682.4938</mark>	660.3078
9	2010	619.0466	352.9828	269.5453	526.1208	568.1885	644.4539
10	2011	629.3266	309.8652	303.5072	441.4283	564.4568	667.7827
11	2012	424.1327	174.9376	183.0325	308.3281	331.5462	332.0094
12	2013	569.8520	150.4696	194.9988	417.3259	357.0988	492.0783
13	2014	424.1954	183.5525	208.6980	156.0542	231.8563	309.6877
14	2015	1027.0227	320.7684	508.4455	414.9164	616.1209	749.3386

	years	d10	d20	d30	d40	d50	k10
1	2002	0.063	0.0617	0.015	-0.005	-0.004	-0.009
2	2003	0.173 ***	0.1158 ***	0.094 ***	0.0775 ***	0.0543 **	0.158 ***
3	2004	0.284 ***	0.2303 ***	0.200 ***	0.1681 ***	0.1591 ***	0.247 ***
4	2005	0.361 ***	0.3374 ***	0.310 ***	0.2928 ***	0.2470 ***	0.344 ***
5	2006	0.256 ***	0.2447 ***	0.213 ***	0.2072 ***	0.1879 ***	0.248 ***
6	2007	0.238 ***	0.2422 ***	0.217 ***	0.2315 ***	0.2087 ***	0.271 ***
7	2008	0.318 ***	0.3232 ***	0.275 ***	0.2637 ***	0.2193 ***	0.295 ***
8	2009	0.306 ***	0.2550 ***	0.198 ***	0.2014 ***	0.1731 ***	0.203 ***
9	2010	0.076	0.0095	-0.021	-0.029	-0.014	0.029
10	2011	0.227 **	0.1805 ***	0.190 ***	0.1727 ***	0.1288 ***	0.214 ***
11	2012	0.195 **	0.0877 .	0.177 ***	0.1925 ***	0.1750 ***	0.168 ***
12	2013	0.126 *	0.1310 **	0.158 ***	0.1571 ***	0.1344 ***	0.186 ***
13	2014	0.083	0.0197	0.026	0.0084	0.0081	-0.011
14	2015	0.201 **	0.0908.	0.108 *	0.0761 *	0.0518 .	0.066 *

Table 1: Spatial correlation of STRAWBERRY

	years 🌣	myapple 🌻	myplum 🌣	mycherries 🍦	myjordbar 🏺	myberr 🌣	mypoteter 🏺
1	2002	781.3579	515.5554	254.5138	540.7011	569.7522	696.5924
2	2003	535.7069	363.8950	203.2240	378.6443	976.6095	935.2527
3	2004	686.0725	435.9162	<mark>316.6032</mark>	<mark>518.1105</mark>	565.9223	675.3845
4	2005	466.0768	333.7572	243.4731	507.2534	579.9146	731.1029
5	2006	691.2889	412.6428	<mark>382.6622</mark>	<mark>513.8112</mark>	592.5815	761.0512
6	2007	<mark>492.149</mark> 4	<mark>386.6293</mark>	231.1 <mark>58</mark> 6	488.1710	540.8959	738.2663
7	2008	758.67 <mark>6</mark> 9	348.1263	285.9190	517.5 <mark>4</mark> 16	519.7586	953.3275
8	2009	580.6163	353.3 <mark>4</mark> 47	348.3503	502.9935	<mark>682.4938</mark>	660.3078
9	2010	619.0466	352.9828	269.5453	526.1208	568.1885	644.4539
10	2011	629.3266	309.8652	303.5072	441.4283	564.4568	667.7827
11	2012	424.1327	174.9376	183.0325	308.3281	331.5462	332.0094
12	2013	569.8520	150.4696	194.9988	417.3259	357.0988	492.0783
13	2014	424.1954	183.5525	208.6980	156.0542	231.8563	309.6877
14	2015	1027.0227	320.7684	508.4455	414.9164	616.1209	749.3386

	years	d10	d20	d30	d40	d50	k10
1	2002	0.0729	0.022	0.005	-0.031	0	0.0037
2	2003	0.0079	-0	-0	-0	-0	-0
3	2004	0.3643 ***	0.330 ***	0.337 ***	0.312 ***	0.326 ***	0.4091 ***
4	2005	0.2058 ***	0.233 ***	0.248 ***	0.253 ***	0.253 ***	0.2781 ***
5	2006	0.1913 ***	0.193 ***	0.195 ***	0.179 ***	0.180 ***	0.2245 ***
6	2007	0.1699 ***	0.230 ***	0.227 ***	0.211 ***	0.198 ***	0.1973 ***
7	2008	0.1699 ***	0.207 ***	0.210 ***	0.228 ***	0.254 ***	0.2069 ***
8	2009	0.1309 **	0.095 **	0.099 ***	0.115 ***	0.161 ***	0.1669 ***
9	2010	0.2234 ***	0.239 ***	0.249 ***	0.248 ***	0.278 ***	0.2744 ***
10	2011	0.0555 .	0.099 ***	0.086 ***	0.073 ***	0.069 ***	0.0572 **
11	2012	0.1978 ***	0.180 ***	0.152 ***	0.104 ***	0.083 **	0.1279 ***
12	2013	0.1596 **	0.145 ***	0.157 ***	0.134 ***	0.089 ***	0.0853 ***
13	2014	0.3449 ***	0.320 ***	0.332 ***	0.302 ***	0.280 ***	0.3108 ***
14	2015	0.2166 ***	0.230 ***	0.219 ***	0.226 ***	0.215 ***	0.2071 ***

Table 1: Spatial correlation of BERRIES

	years 🌣	myapple 🌻	myplum 🌣	mycherries 🍦	myjordbar 🏺	myberr 🌣	mypoteter 🏺
1	2002	781.3579	515.5554	254.5138	540.7011	569.7522	696.5924
2	2003	535.7069	363.8950	203.2240	378.6443	976.6095	935.2527
3	2004	686.0725	435.9162	<mark>316.6032</mark>	<mark>518.1105</mark>	565.9223	675.3845
4	2005	466.0768	333.7572	243.4731	507.2534	579.9146	731.1029
5	2006	691.2889	412.6428	<mark>382.6622</mark>	<mark>513.8112</mark>	592.5815	761.0512
6	2007	<mark>492.149</mark> 4	<mark>386.6293</mark>	231.1 <mark>58</mark> 6	488.1710	540.8959	738.2663
7	2008	758.67 <mark>6</mark> 9	348.1263	285.9190	517.5 <mark>4</mark> 16	519.7586	953.3275
8	2009	580.6163	353.3 <mark>4</mark> 47	348.3503	502.9935	<mark>682.4938</mark>	660.3078
9	2010	619.0466	352.9828	269.5453	526.1208	568.1885	644.4539
10	2011	629.3266	309.8652	303.5072	441.4283	564.4568	667.7827
11	2012	424.1327	174.9376	183.0325	308.3281	331.5462	332.0094
12	2013	569.8520	150.4696	194.9988	417.3259	357.0988	492.0783
13	2014	424.1954	183.5525	208.6980	156.0542	231.8563	309.6877
14	2015	1027.0227	320.7684	508.4455	414.9164	616.1209	749.3386

5		2.000	ie i. Space				
	years	d10	d20	d30	d40	d50	k10
1	2002	-0.055	-0.072	-0.094	-0.064	-0.041	-0.075
2	2003	-0.027	0.042	0.027	0.0292	0.0198	0.000
3	2004	0.1676 .	0.146 *	0.125 *	-0.022	-0.107	0.076 **
4	2005	-0.064	-0.165	-0.154	-0.156	-0.142	-0.004
5	2006	0.0028	0.010	0.031	0.0365	0.0212	-0.019
6	2007	0.0496	0.174 *	0.205 *	0.2106 **	0.1666 **	0.029
7	2008	-0.047	0.015	0.012	0.0091	0.0064	-0.023
8	2009	-0.060	-0.089	-0.064	-0.093	-0.071	0.009
9	2010	0.2184 .	0.376 **	0.360 **	0.2491 *	0.0775	0.034
10	2011	0.0616	-0.133	-0.120	-0.122	-0.109	-0.085
11	2012	0.0132	-0.148	-0.198	-0.181	-0.173	-0.091
12	2013	0.1872 .	0.121	0.144 .	0.1328 *	0.1170 *	0.116 **
13	2014	0.1996	0.375 **	0.338 **	0.2790 *	0.1683 .	0.094 *
14	2015	0.1290	0.132	0.012	0.0922	0.0436	-0.032

Table 1: Spatial correlation of POTATOE

Set up spatial models

- Linear-in-parameters CS model: $y = X\beta + u$
- SAR: $y = \lambda W y + X \beta + u$
- SEM: $y = X\beta + u$

$$u = \rho W u + v$$

• SDM: $y = \rho W y + x(\beta + \gamma) + W x(-\rho\beta) + v$

Contribution

- No semi-aggregation \rightarrow farm-level
- Not the boring corn, maize, wheat \rightarrow fruits
- No OLS-like Pearson correlation or functional form approach for conditioning spatial correlations on weather → SDM
- Finally, if we are smart enough to set the explanatory proxies in a meaningful way presumably we can make the distinction between the effects of, say draught and extreme heat.
- And much more in policy relevance