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Introduction I. 

• Main drivers of ag. yields: 
– Technology 
– R&D (new hybrids etc.) 
– Weather 
– Etc. 

• Common sense and anecdotal observations 
(remember the Tromsø presentation) revealed extreme 
events tended to impact wide geographic 
areas 

• This was called the «systemic» nature of agriculture 



Introduction II. 

• Annual production shocks are driven by year-
to-year weather variability (weather is in the 
production function) 

-> identifying the drivers is well-researched, but 
little attention was payed which of these shocks 
aggregate up to a regional or national level 

 



Some Literature I. 
• Goodwin (2015AmJAgricEcon) linked yield 

correlation to the weather and he found that 
weather events drive yields 
 
 

• He examined this phenomenon by considering 
the relationship between geographical distance 
and linear Pearson correlation coefficient  

• (it’s not a new thing, crop insurance economists 
use it all the time, but with his data he showed 
that the dependence concept lays under the 
observations*) 
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Some Literature II. 

• Tack and Holt (2016, ClimaticCh) found that 
spatial correlation roughly double in both 
good and bad years relative to normal years 
(important for climate change, food price volatility, 
crop insurance & yield modeling literature) 

• They consider several functional forms for 
conditioning spatial correlations on weather 
and find that less flexible relationships 
generate misleading results 



Shortcomings 
• Both papers uses «a bit» aggregated data  

– County level and state level, resp. (the reason is lacking data on 
the farm level) 

– Tack and Holt note that their regression framework could be 
generalized to county level which would cause larger cross-
sections but smaller time-series dimension. 

• Weather is measured as an aggregate index across several 
temperature and precipitation variables.  

• As such, they cannot distinguish between the effects of draught 
versus extreme heat.  

• However both have been found to be significant drivers of mean 
crop yields, and this likely extends to spatial yield correlations as 
well.  

• Million dollar question: Which one induces larger changes in 
correlations than the other? They leave this open for future 
research 



Spatial autocorrelation I. 

• Observations made at different locations 
might not be independent 

• Assumption: measurements made at nearby 
locations may be closer in value than 
measurements made further apart 

• On the term «autocorrelation»: correlation of 
a variable with itself  



Spatial autocorrelation II. 

• Positive: when similar values occur near one 
another  

• No: random locations (general assumption) 
• Negative: dissimilar values occure near one 

another 
 

 

Source: stolen from Google 



Let’s get the job done 

• Need to define what is meant by two 
observations are close to each other, like a 
distance measure 

• Called «distance weight matrix» which defines 
the relationships between locations where 
measurements are made (nxn) 

• Weight?!: can be fixed (binary -> k-nearest) and 
weighted (inverse distance, raw standardized etc.) 
  



Moran’s I 
• Global spatial autocorrelation for continuous data 
• It is based on cross-products of the deviations 

from the mean and is calculated for   
observations on a variable at locations i, j as: 

 
 
 
 
• -1/(n-1): expectation of MI tends to zero (in the 

absence of sp.corr.) 
•  Geary’s C statistic (Geary 1954) is based on the deviations in 

responses of each observation with one another 



Norwegian fruit industry + poteter 
• Farm-level horticulture data (farmers got subsidies 

after these registered volumes)  
• 6 products:  

– Apple, pear merged (juice issue) 
– Plum 
– Potato 
– Strawberry 
– Other berries: BRINGEBÆR,SOLBÆR,RIPS,HAGEBLÅBÆR,STIKKELSBÆR 

 



Weight matrices 

• Most controversial issue in spatial models 
(mostly arbitrary, usually not robust, BUT…) 

• Systematic testing makes sense 
• Keep it simple for now, 

– D- distance function: 10k, 20k, 30k, 40k, 50k 
– K- nearest neighbor function: 10 

 



Mean yields (kg/daa) 



DOES THE DATA EXHIBIT SPATIAL 
AUTOCORRELATION OR NOT? 

 
 
 
 

• If not, go on with the standard non-spatial models 
• If so, then formulate spatial models 
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Set up spatial models 

• Linear-in-parameters CS model: 
• SAR: 
• SEM: 

 
• SDM:    



Contribution 
• No semi-aggregation  farm-level 
• Not the boring corn, maize, wheat  fruits 
• No OLS-like Pearson correlation or functional 

form approach for conditioning spatial 
correlations on weather  SDM 

• Finally, if we are smart enough to set the 
explanatory proxies in a meaningful way 
presumably we can make the distinction 
between the effects of, say draught and 
extreme heat. 

• And much more in policy relevance 
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