MitiGate: an On-line Meta-Analysis Database of Mitigation Strategies for Enteric Methane Emissions

Eli Rudinow Saetnan, Jolien B. Veneman


The animal science sector has seen a proliferation of potential mitigation strategies, aimed at tackling emissions from enteric fermentation in ruminant livestock production. By bringing together data from studies on the many mitigation options available through a structured meta-analytical approach, it is possible to evaluate the overall mitigation potential for these broad strategies as well as exploring the many factors influencing the potential of CH4 mitigation strategies. Such quantification of the different mitigation strategies will allow for better estimation of mitigation potential on different levels (animal, farm and sector scale) in modelling efforts. Also quantification is important to determine the strategies that show the best potential in lowering methane emissions and hence can be instrumental in policy recommendations. A database has been established through an initial extensive structured search of published literature on the topic. For each relevant paper identified, a range of meta-data have been extracted including information on the study design, mitigation strategy, animal husbandry, diet and methane emissions. By creating a database with multiple levels of moderator coding, we have provided a flexible platform for future meta-analyses at many levels of aggregation. Studies can then in future be aggregated at the level most appropriate for specific modelling or policy recommendations. This comprehensive database is being made available on-line through a user-friendly web interface. The web-site provides a facility for open access to the database, as well as future updates of the database as more research is published on the topic.

Full Text:

Presentation (PDF)

Previous issues and volumes can be found in the 'Archives' section.

You can refer to a paper published in this series in the following format Author (2013) Title. FACCE MACSUR Reports 2: D-C1.3, where "D-C1.3" is the article ID en lieu of page range.