A prototype stochastic dynamic equilibrium model of the global food system
Abstract
The risks of food consumption are primarily linked to those of food production due to stochastic weather. Other sources of risk are associated with break-down of food trade or transport for weather or political reasons. Hopefully, future cures against increased risk due to climate change may be found with new agricultural technologies, systems of storage from favorable to unfavorable periods, more flexible trade-arrangements between favorable and unfavorable places. However, in the short run one has to rely on the available technology, storage facilities and trade agreements. With a realistic model of the stochastic global food system, it should be possible to measure risks of certain extreme unfavorable events.
A realistic case will have countries with different climate in different growing seasons. Markets will be open for trade at a number of points per year, in which decisions of production, storage, trade and consumption can be coordinated as a static equilibrium. Determinants of this equilibrium are the weather up to this date reflected in the state of crops, the available harvested stocks and the decision-maker's preferences. With a global stochastic process of weather, a stochastic sequence of equilibria follows.
Full Text:
PDFPrevious issues and volumes can be found in the 'Archives' section.
You can refer to a paper published in this series in the following format Author (2013) Title. FACCE MACSUR Reports 2: D-C1.3, where "D-C1.3" is the article ID en lieu of page range.