Observed and simulated growth, development and yield of field-grown tomato in the Elbe lowland, the Czech Republic

Vera Potopová

Abstract


This study deals with observed and simulated growth, development and yield of the fresh-market Thomas F1 tomato bush cultivar (Solanum lycopersicum L.) grown under open field conditions at farm scale in the Elbe lowland. The CROPGRO-Tomato model used in this study is part of the DSSAT V4.5 software. The model has been calibrated with growth analyses data from field experiments, agronomic evidence (GC UPRAVY software) and the most currently available data from the literature sources of cardinal temperatures for tomato phenology, fruit growth and photosynthesis (Tb - base temperature; Topt1 - the lowest temperature at which maximum rate is attained; Topt2 - the upper temperature at which maximum rate is sustained; Tmax - maximum temperature). The sampling plants were collected a once 14 days for analysis of basic physiological parameters: LAI (Leaf area index), LAR (Leaf Area Ratio), C (Crop Growth Rate), RGRw (Relative Growth Rate) and NAR (Net Assimilation Rate). Phenology observation was done weakly. Meteorological, soil and agro-technical parameters across the fields were monitored. The treatments were well-irrigated and well-fertilised, and therefore, no water or N stress was present.

Parameters affecting leaf growth, dry biomass productions, and dry biomass of leaves, stem and generative organs from planting to harvest were calibrated against the observed data. Phenological development and growth processes such as leaf expansion and fruit growth depend on cardinal temperatures. Leaf area expansion depends on the new leaf mas produced and specific leaf area, which is influenced by light, temperature, root N uptake, and plant water status. Starting date for the simulation corresponds with transplanting date of the crop in the field, which was set at day 141. The simulation period ended at day 273, a reasonable estimate for the date when plants are stopped in practice. Initial input dry biomass at Mochov farm (Suchdol) was set to 2.25 (2.88), 1.71 (2.5) and 0.01 (0.78) grams for leaves, stem and generative organs, respectively.


References


Authors: Vera Potopová, Luboš Türkott

Affiliation: Department of Agroecology and Biometeorology, Czech University of Life Sciences Prague, Czech Republic





Previous issues and volumes can be found in the 'Archives' section.

You can refer to a paper published in this series in the following format Author (2013) Title. FACCE MACSUR Reports 2: D-C1.3, where "D-C1.3" is the article ID en lieu of page range.