Report on results of scaling exercise

Holger Hoffmann, Frank Ewert


The MACSUR scaling exercise investigates the effects of scaling crop model data in combination with different data types (climate, soil and management). For this purpose the effect of aggregating model input as well as spatial sampling schemes were tested with a range of crop models under varying conditions. From findings for winter wheat yield of the region of North Rhine-Westphalia (Germany) it can be concluded for most models, that regional water-limited yield simulations in a temperate humid region are on average little affected by aggregating soil or climate data up to 100 km resolution. However, some models showed considerably larger biases. Consequently, models need to be assessed individually for their robustness to input data aggregation when simulating regional yields. Aggregating soils partially led to aggregation effects larger than from averaged climate data, in the range or larger than the inter-annual yield variability or differences between models. This can thus be a dominant source of uncertainty when assessing spatial yield patterns of heterogeneous regions. Simultaneous use of aggregated climate and soil data is likely to increase these aggregation effects further. However, large negative aggregation effects were found in areas with soils characterized by high available water holding capacity and large positive aggregation effects in areas with soils of predominantly low available water holding capacity. This indicates that the direction and magnitude of aggregation effects may be estimated from a limited number of soil variables.

Similarly, the precision of simple random sampling (SimRS) and variations of stratified random sampling (StrRS) schemes in estimating regional mean water-limited yields were evaluated. We found that the precision gains of StrRS varied considerably across stratification methods and crop models. Precision gains for compact geographical stratification were positive, stable and consistent across crop models. Stratification with soil water holding capacity had very high precision gains for twelve models, but resulted in negative gains for two models. Increasing the sample size monotonously decreased the sampling errors for all the sampling schemes. We conclude that compact geographical stratification can modestly but consistently improve the precision in estimating regional mean yields. Using the most influential environmental variable for stratification can notably improve the sampling precision, when the sensitivity behaviour of a crop model is known.

The report contains parts from published journal articles, therfore, only the abstract is made available.


scaling; cropm model performance

Full Text:

PDF (Abstract))


Angulo C, Gaiser T, Rötter RP, Børgesen CD, Hlavinka P, Trnka M, Ewert F (2014) ‘Fingerprints’ of four crop models as affected by soil input data aggregation. Eur J Agron 61: 35 – 48

Angulo C, Rötter R, Trnka M, Pirttioja N, Gaiser T, Hlavinka P, Ewert F (2013) Characteristic 'fingerprints' of crop model responses data at different spatial resolutions to weather input. Eur J Agron 49: 104-114

Aubry, C., Papy, F., Capillon, A., 1998. Modelling Decision-Making Processes for Annual Crop Management. Agricultural Systems 56: 45-65.

Cale, W.G., Oneill, R.V., Gardner, R.H., 1983 Aggregation error in non-linear ecological models. Journal of Theoretical Biology 100: 539-550.

Constantin, J., Bergez, J.-E., Raynal, H., Hoffmann, H., Ewert, F., 2016. Impact of maize management variability modele das decision rules on yield and drainage at the regional scale. iCROPM, Berlin, Germany.

Coucheney, E., Eckersten, H., Jansson, P.E., Ewert, F., Gaiser, T., Hoffmann, H., Lewan, E., 2015. Sensitivity of crop water and N stress to soil input data in regional crop yield simulations and the implications for data aggregation effects: a case study with the COUP-model. MACSUR Science Conference 2015. Reading, UK.

De Wit, A.J.W., Boogaard, H.L., Van Diepen, C.A., 2005. Spatial resolution of precipitation and radiation: The effect on regional crop yield forecasts. Agr Forest Meteorol 135: 156-168.

Easterling, W.E., Weiss, A., Hays, C.J., Mearns, L.O., 1998. Spatial scales of climate information for simulating wheat and maize productivity: the case of the US Great Plains. Agricultural and Forest Meteorology 90, 51–63.

Ershadi, A., McCabe, M.F., Evans, J.P., Walker, J.P., 2013. Effects of spatial aggregation on the multi-scale estimation of evapotranspiration. Remote Sens Environ 131, 51-62.

Eyshi Rezaei, E., Siebert, S., Ewert, F., 2015. Impact of data resolution on heat and drought stress simulated for winter wheat in Germany. Eur J Agron. 65: 69−82.

Ewert, F., Van Bussel, L., Zhao, G., Hoffmann, H., Thomas, G., Specka, X., Nendel, C., Kersebaum, K.-C., Sosa, C., Lewan, E., Yeluripati, J., Kuhnert, M., Tao, F., Rötter, R.P., Constantin, J., Raynal, H., Wallach, D., Teixeira, E., Grosz, B., Bach, M., Doro, L., Roggero, P.P., Zhao, Z., Wang, E., Kiese, R., Haas, E., Eckersten, H., Trombi, G., Bindi, M., Klein, C., Biernath, C., Heinlein, F., Priesack, E., Cammarano, D., Asseng, S., Elliott, J., Glotter, M., Basso, B., Baigorria, G.A., Romero, C.C., Moriondo, M., 2015. Uncertainties in Scaling-up Crop Models for Large-area Climate-change Impact Assessments. In: Rosenzweig, C., Hillel, D. (Eds.), Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison Project (AgMIP). World Scientific Publishing Company, pp. 262-277.

Ewert, F., Van Ittersum, M.K., Heckelei, T., Therond, O., Bezlepkina, I., Andersen, E., 2011. Scale changes and model linking methods for integrated assessment of agri-environmental systems. Agriculture, Ecosystems & Environment 142, 6-17.

Ewert, F., Van Keulen, H., Van Ittersum, M.K., Giller, K., Leffelaar, P., Rötter, R., 2006. Multi-scale analysis and modelling of natural resource management options. In: iEMSs Third Biennial Meeting: “Summit on Environmental Modelling and Software”, International Environmental Modelling and Software Society, Burlington, USA, July 2006, p. 6 (CD ROM. Internet:

Folberth, C., Yang, H., Wang, X., Abbaspour, K.C., 2012. Impact of input data resolution and extent of harvested areas on crop yield estimates in large-scale agricultural modeling for maize in the USA. Ecological Modelling 235: 8-18

Hansen, J.W., Jones, J.W., 2000. Scaling-up crop models for climate variability applications. Agr Syst 65: 43-72.

Hansen, J.W., Challinor, A., Ines, A., Wheeler, T., Moron, V., 2006. Translating climate forecasts into agricultural terms: advances and challenges. Climate Research 33: 27-41.

Heuvelink G.B.M., Pebesma E.J., 1999. Spatial aggregation and soil process modelling. Geoderma 89, 47-65.

Hoffmann, H., Ewert, F., 2015. Review on scaling methods for crop models. FACCE MACSUR Reports Vol. 6.

Hoffmann, H., Zhao, G., Asseng, S., Bindi, M., Biernath, C., Constantin, J., Coucheney, E., Dechow, R., Doro, L., Eckersten, H., Gaiser, T., Grosz, B., Heinlein, F., Kassie, B.T., Kersebaum, K.-C., Klein, C., Kuhnert, M., Lewan, E., Moriondo, M., Nendel, C., Priesack, E., Raynal, H., Roggero, P.P., Rötter, R.P., Siebert, S., Specka, X., Tao, F., Teixeira, E., Trombi, G., Wallach, D., Weihermüller, L., Yeluripati, J., Ewert, F., 2016. Impact of spatial soil and climate input data aggregation on regional yield simulations. PLoS ONE 11(4): e0151782. doi:10.1371/journal.pone.0151782.

Hoffmann, H., Zhao, G., van Bussel, L., Enders, A., Specka, X., Sosa, C., Yeluripati, J., Tao, F., Constantin, J., Teixeira, E., Grosz, B., Doro, L., Zhao, Z., Vanuytrecht, E., Cammarano, D., Nendel, C., Kiese, R., Raynal, H., Eckersten, H., Klatt, S., Haas, E., Kersebaum, K.-C., Kuhnert, M., Wang, E., Lewan, E., Bach, M., Roggero, P.P., Rötter, R., Wallach, D., Krauss, G., Siebert, S., Gaiser, T., Asseng, S., Ewert, F., 2015. Variability of spatial aggregation effects of climate data on regional yield simulation by crop models for a selected region in Germany. Climate Research 65, 53-69.

Janssen, S., Andersen, E., Athanasiadis, I.N., Van Ittersum, M.K., 2009. A database for integrated assessment of European agricultural systems. Environ Sci Policy 12: 573-587.

Kersebaum, K.C., Wenkel, K.O., 1998. Modelling water and nitrogen dynamics at three different spatial scales – influence of different data aggregation levels on simulation results. Nutrient Cycling in Agroecosystems 50, 313-319.

Kuhnert, M., Yeluripati, J., Smith, P., Hoffmann, H., Van Oijen, M., Constantin, J., Dechow, R., Eckersten, H., Gaiser, T., Grosz, B., Haas, E., Kersebaum, K.-C., Kiese, R., Klatt, S., Lewan, E., Nendel, C., Raynal, H., Sosa, C., Specka, X., Teixeira, E., Wang, E., Weihermüller, L., Zhao, G., Zhao, Z., Ewert, F. Impact analysis of climate data aggregation at different spatial scales on simulated Net Primary Productivity for croplands. European Journal of Agronomy (under review).

Meentemeyer, V., 1989. Geographical perspectives of space, time, and scale. Landscape Ecol. 3: 163-173.

Nendel, C., Wieland, R., Mirschel, W., Specka, X., Guddat, C., Kersebaum, K.C., 2013. Simulating regional winter wheat yields using input data of different spatial resolution. Field Crop Research 145: 67-77.

Olesen, J.E., Bøcher, P.K., Jensen, T., 2000. Comparison of scales of climate and soil data for aggregating simulated yields of winter wheat in Denmark. Agr Ecosyst Environ. 82: 213-228.

Pierce, L.L., Running, S.W., 1995. The effects of aggregating subgrid land-surface variation on large-scale estimates of net primary production. Landscape Ecology 10: 239-253.

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C., Müller, C., Arneth, A., et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. P Natl Acad Sci USA. 2014; 111, 3268-3273.

Therond, O., Hengsdijk, H., Casellas, E., Wallach, D., Adam, M., Belhouchette, H., et al. 2011. Using a cropping system model at regional scale: Low-data approaches for crop management information and model calibration. Agr Ecosyst Environ. 142: 85-94.

Van Bussel, L.G.J., Ewert, F., Leffelaar, P.A., 2011. Effects of data aggregation on simulations of crop phenology. Agriculture Ecosystems and Environment 142: 75-84.

Van Bussel, L.G.J., Ewert, F., Zhao, G., Hoffmann, H., Enders, A., Wallach, D., Constantin, J., Raynal, H., Klein, C., Biernath, C., Heinlein, F., Priesack, E., Tao, F., Rötter, R., Cammarano, D., Asseng, S., Elliott, J., Glotter, M., Nendel, C., Kersebaum, K.-C., Specka, X., Basso, B., Baigorria, G., Romero, C., Chryssanthacopoulos, J., 2016. Spatial sampling of weather data for regional crop yield simulations. Agricultural and Forest Meteorology 220, 101-115.

Van Ittersum, M., Leffelaar, P., Van Keulen, H., Kropff, M., Bastiaans, L., Goudriaan, J., 2003. On approaches and applications of the Wageningen crop models. European Journal of Agrononmy 18: 201-234.

Wassenaar, T., Lagacherie, P., Legros, J.-P., Rounsevell, M.D.A., 1999. Modelling wheat yield responses to soil and climate variability at the regional scale. Climate Research 11, 209–220.

Webber, H., Zhao, G., Wolf, J., Britz, W., De Vries, W., Gaiser, T. et al. 2015. Climate change impacts on European crop yields: do we need to consider nitrogen limitation? Eur J Agron. 71, 123-134.

Zhao, G., Bryan, B.A., King, D., Luo, Z., Wang, E., Song, X., Yu, Q., 2013. Impact of agricultural management practices on soil organic carbon: simulation of Australian wheat systems. Global Change Biology 19: 1585-1597.

Zhao, G., Hoffmann, H., Specka, X., Nendel, C., Coucheney, E., Yeluripati, J., Tao, F., Constantin, J., Raynal, H., Teixeira, E., Grosz, B., Dechow, R., Doro, L., Eckersten, H., Kuhnert, M., Lewan, E., Kersebaum, K.-C., Weihermüller, L., Rötter, R., Roggero, P.P., Wallach, D., Cammarano, D., Asseng, S., Stefan, S., Gaiser, T., Ewert, F., 2016. Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops. Environmental Modelling & Software 80, 100-112.

Zhao, G., Hoffmann, H., van Bussel, L., Enders, A., Specka, X., Sosa, C., Yeluripati, J., Tao, F., Constantin, J., Teixeira, E., Grosz, B., Doro, L., Zhao, Z., Vanuytrecht, E., Cammarano, D., Nendel, C., Kiese, R., Raynal, H., Eckersten, H., Klatt, S., Haas, E., Kersebaum, K.-C., Kuhnert, M., Wang, E., Lewan, E., Bach, M., Roggero, P.P., Rötter, R., Wallach, D., Krauss, G., Siebert, S., Gaiser, T., Asseng, S., Ewert, F., 2015a. Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables. Climate Research 65, 141-157.

Zhao, G., Siebert, S., Enders, A., Rezaei, E.E., Yan, C., Ewert, F., 2015b. Demand for multi-scale weather data for regional crop modeling. Agricultural and Forest Meteorology 200, 156-171.

Previous issues and volumes can be found in the 'Archives' section.

You can refer to a paper published in this series in the following format Author (2013) Title. FACCE MACSUR Reports 2: D-C1.3, where "D-C1.3" is the article ID en lieu of page range.