Report on results of application of scaling methods for integrated modelling
Abstract
Defining and estimating uncertainty in simulations is essential in order to quantify the reliability of the outcomes or when model improvement is sought. Several general definitions of uncertainty are given for model-based simulations. By defining the uncertainty from different sources, these can be quantified and assessed separately, as well as eventually their absolute or relative contribution to the total uncertainty. Therefore, different types and sources of uncertainty are given. Furthermore, the choice of method when assessing the uncertainty of a given simulation may depend on the purpose and the type of uncertainty to be assessed. Approaches of assessing uncertainty in process-based models are described in general and more specifically for crop models. As a simplistic method, the already established approach of variance decomposition is suggested.
The report contains parts of published papers, therefore only the abstract is made available.
Keywords
Full Text:
PDF (Abstract))References
Aggarwal, P.K., Mall, R.K., Climate change and rice yields in diverse agro-environments of India. II. Effect of uncertainties in scenarios and crop models on impact assessment. Climatic Change 52, 331-343.
Asseng, S., Ewert, F., Rosenzweig, C. Jones, J.W., Hatfield, J.L., Ruane, A.C., Boote, K.J., Thorburn, P.J., Rötter, R.P., Cammarano, D., Brisson, N., Basso, B., Martre, P., Aggarwal, P.K., Angulo, C., Bertuzzi, P., Biernath, C., Challinor, A.J., Doltra, J., Gayler, S., et al., 2013. Uncertainty in simulating wheat yields under climate change. Nature Climate Change. doi: 10.1038/NCLIMATE1916.
Challinor, A.J., Challinor, Smith, M.S., Thornton, P., 2013. Use of agro-climate ensembles for quantifying uncertainty and informing adaptation. Agricultural and Forest Meteorology 170, 2-7.
Chen, J., Brissette, F.P., Chaumont, D., Braun, M., 2013. Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. Journal of Hydrology 479, 200-214.
Fronzek, S., Pirttioja, N., Carter, T.R., Bindi, M., Hoffmann, H., Palosuo, T., Ruiz-Ramos, M., Tao, F., Trnka, M., Acutis, M., Asseng, A., Baranowski, P., Basso, B., Bodin, P., Buis, S., Cammarano, D., et al., 2016. Classifying simulated wheat yield responses to changes in temperature and precipitation across a European transect. iCROPM2016, Berlin, Germany.
Hawkins, E., Sutton, R., 2009. The potential to narrow uncertainty in regional climate predictions. Bull. American Meteorological Society 90, 1095-1107.
Hoffmann, H., Rath, T., 2012. Meteorologically consistent bias correction of climate time series for agricultural models. Theoretical and Applied Climatology 110, 129-141.
Hoffmann, H., Rath, T., 2013. Future bloom and blossom frost risk for Malus domestica considering climate model and impact model uncertainties. PLoS ONE 8(10): e75033. doi:10.1371/journal.pone.0075033.
Hoffmann, H., Zhao, G., Asseng, S., Bindi, M., Biernath, C., Constantin, J., Coucheney, E., Dechow, R., Doro, L., Eckersten, H., Gaiser, T., Grosz, B., Heinlein, F., Kassie, B.T., Kersebaum, K.-C., Klein, C., Kuhnert, M., Lewan, E., Moriondo, M., Nendel, C., Priesack, E., Raynal, H., Roggero, P.P., Rötter, R.P., Siebert, S., Specka, X., Tao, F., Teixeira, E., Trombi, G., Wallach, D., Weihermüller, L., Yeluripati, J., Ewert, F., 2016b. Impact of spatial soil and climate input data aggregation on regional yield simulations. PLoS ONE 11(4): e0151782. doi:10.1371/journal.pone.0151782.
Hoffmann, H., Zhao, G., van Bussel, L., Enders, A., Specka, X., Sosa, C., Yeluripati, J., Tao, F., Constantin, J., Teixeira, E., Grosz, B., Doro, L., Zhao, Z., Vanuytrecht, E., Cammarano, D., Nendel, C., Kiese, R., Raynal, H., Eckersten, H., Klatt, S., Haas, E., Kersebaum, K.-C., Kuhnert, M., Wang, E., Lewan, E., Bach, M., Roggero, P.P., Rötter, R., Wallach, D., Krauss, G., Siebert, S., Gaiser, T., Asseng, S., Ewert, F., 2015. Variability of spatial aggregation effects of climate data on regional yield simulation by crop models for a selected region in Germany. Climate Research 65, 53-69.
Hoffmann, H., Zutz, K., 2013. Climate-Change-Driven Beer Warming: Threats and Opportunities. The Journal of Irreproducible Results 52, 26-27.
Jones, R.N., 2000. Managing uncertainty in climate change projections – Issues for impact assessment. Climatic Change 45, 403-419.
Katz, R.W., 2002. Techniques for estimating uncertainty in climate change scenarios and impact studies. Climate Research 20, 167-185.
Kollas, C., Kersebaum, K.C., Nendel, C., Manevski, K., Müller, C., Palosuo, T., Armas-Herrera, C.M., Beaudoin, N., Bindi, M., Charfeddine, M., Conradt, T., Constantin, J., Eitzinger, J., Ewert, F., Ferrise, R., Gaiser, T., Garcia de Cotazar-Atauri, I., Giglio, L., Hlavinka, P., Hoffmann, H., Hoffmann, M.P., Launay, M., Manderscheid, R., Mary, B., Mirschel, W., Moriondo, M., Olesen, J.E., Öztürk, I., Pacholski, A., Ripoche-Wachter, D., Roggero, P.P., Roncossek, S., Rötter, R.P., et al., 2015. Crop rotation modelling - a European model intercomparison. European Journal of Agronomy 70, 98-111.
Kuhnert, M., Yeluripati, J., Smith, P., Hoffmann, H., Van Oijen, M., Constantin, J., Dechow, R., Eckersten, H., Gaiser, T., Grosz, B., Haas, E., Kersebaum, K.-C., Kiese, R., Klatt, S., Lewan, E., Nendel, C., Raynal, H., Sosa, C., Specka, X., Teixeira, E., Wang, E., Weihermüller, L., Zhao, G., Zhao, Z., Ewert, F. Impact analysis of climate data aggregation at different spatial scales on simulated Net Primary Productivity for croplands. European Journal of Agronomy (under review).
Lobell, D.B., Field, C.B., Cahill, K., N., Bonfills, C., 2006. Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties. Agricultural and Forest Meteorology 141, 208-218.
Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J.W., Rötter, R.P., Boote, K.J., Ruane, A.C., Thorburn, P.J., Cammarano, D., Hatfield, J.L., Rosenzweig, C., Aggarwal, P.K., et al., 2015. Multimodel ensembles of wheat growth: many models are better than one. Global Chang Biology 21, 911-25.
Olesen, J.E., Carter, T.R., Díaz-Ambrona, C.H., Fronzek, S., Heidmann, T., Hickler, T., Holt, T., Minguez, M.I., Morales, P., Palutikof, J.P., Quemada, M., Ruiz-Ramos, M., Rubaek, G.H., Sau, F., Smith, B., Sykes, M.T., 2007. Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change 81, 123-143.
Parker, W., 2010. Predicting weather and climate: Uncertainty, ensembles and probability. Studies in History and Philisophy of Modern Physics 41, 263-272.
Pirttioja, N., Carter, T.R., Fronzek, S., Bindi, M., Hoffmann, H., Palosuo, T., Ruiz-Ramos, M., Tao, F., Trnka, M., Acutis, M., Asseng, S., Baranowski, P., Basso, B., Bodin, P., Buis, S., Cammarano, D., Deligios, P., Destain, M.-F., Dumont, B., Ewert, F., et al., 2015. Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Climate Research 65, 87-105.
Ramirez-Villegas, J., Koehler, A.-K., Challinor, A.J., 2015. Assessing uncertainty and complexity in regional-scale crop model simulations. European Journal of Agronomy (in press). doi:10.1016/j.eja.2015.11.021.
Rötter, R.P., 2014. Agricultural impacts: robust uncertainty. Nature Climate Change 4: 251−252.
Roux, S., Brun, F., Wallach, D., 2014. Combining input uncertainty and residual error in crop model predictions: A case study on vineyards. European Journal of Agronomy 52, 191-197.
Ruiz-Ramos, M., Ferrise, R., Rodríguez, A., Lorite, I.J., Tao, F., Pirttioja, N., Fronzek, S., Palosuo, T., Carter, T.R., Bindi, M., Höhn, J. G., Kersebaum, K.-C., Trnka, M., Hoffmann, H., Baranowski, P., Buis, S., et al., 2016. An ensemble of projections of wheat adaptation to climate change in Europe analysed with impact response surfaces. iCROPM2016, Berlin, Germany.
Walker, W.E., Harremoës, P., Rotmans, J., Van der Sluijs, J.P., Van Asselt, M.B.A., Janssen, P., Krayer von Krauss, M.P., 2003. Defining Uncertainty. A Conceptual Basis for Uncertainty Management in Model-Based Decision Support. Integrated Assessment 4, 5-17.
White, J.W., Rassweiler, A., Samhouri, J.F., Stier, A.C., White, C., 2013. Ecologists should not use statistical significance tests to interpret simulation model results. Oikos 123, 385-388.
Van Bussel, L.G.J., Ewert, F., Zhao, G., Hoffmann, H., Enders, A., Wallach, D., Constantin, J., Raynal, H., Klein, C., Biernath, C., Heinlein, F., Priesack, E., Tao, F., Rötter, R., Cammarano, D., Asseng, S., Elliott, J., Glotter, M., Nendel, C., Kersebaum, K.-C., Specka, X., Basso, B., Baigorria, G., Romero, C., Chryssanthacopoulos, J., 2016. Spatial sampling of weather data for regional crop yield simulations. Agricultural and Forest Meteorology 220, 101-115.
Zhao, G., Hoffmann, H., Specka, X., Nendel, C., Coucheney, E., Yeluripati, J., Tao, F., Constantin, J., Raynal, H., Teixeira, E., Grosz, B., Dechow, R., Doro, L., Eckersten, H., Kuhnert, M., Lewan, E., Kersebaum, K.-C., Weihermüller, L., Rötter, R., Roggero, P.P., Wallach, D., Cammarano, D., Asseng, S., Stefan, S., Gaiser, T., Ewert, F., 2016. Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops. Environmental Modelling & Software 80, 100-112.
Zhao, G., Hoffmann, H., van Bussel, L., Enders, A., Specka, X., Sosa, C., Yeluripati, J., Tao, F., Constantin, J., Teixeira, E., Grosz, B., Doro, L., Zhao, Z., Vanuytrecht, E., Cammarano, D., Nendel, C., Kiese, R., Raynal, H., Eckersten, H., Klatt, S., Haas, E., Kersebaum, K.-C., Kuhnert, M., Wang, E., Lewan, E., Bach, M., Roggero, P.P., Rötter, R., Wallach, D., Krauss, G., Siebert, S., Gaiser, T., Asseng, S., Ewert, F., 2015. Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables. Climate Research 65, 141-157.
Previous issues and volumes can be found in the 'Archives' section.
You can refer to a paper published in this series in the following format Author (2013) Title. FACCE MACSUR Reports 2: D-C1.3, where "D-C1.3" is the article ID en lieu of page range.